
MA 1: SESSION 1

1. Introduction

Calculus is one of the greatest achievements of mankind. The main defi-
nitions and theorems (without proofs) can fit on both sides of a single sheet
of notebook paper, but the techniques are powerful and the applications
are almost limitless. It’s hard to think of a scientific field that has not
been fundamentally transformed as a result of calculus and the thinking it
inspired.

However, calculus is also complicated to learn. It takes bits and pieces
from many parts of mathematics: algebra, geometry, a dash of combina-
torics, as well as many other subtopics that you didn’t know could be stud-
ied by themselves. Despite the clarity of the main theorems of calculus, the
ideas and applications derive from many different sources, and it can take
some time to put them all together, or to see how you can turn the elegant
abstractions of calculus into something you can see and feel.

Mathematics, as an academic discipline, is certainly more cumulative than
most subjects, but there is a good reason why it feels like you need to use
all the mathematics you know in order to study calculus. Essentially, ever
since the Cold War, the math curriculum in the United States has been
leading up to learning calculus, mainly so we could train as many scientists
and engineers as possible, and historical momentum has kept it in place.
Thus, the mathematics you learned in high school is probably more related
to physics (e.g. calculus, analytic geometry) than something like computer
science (e.g. discrete mathematics, algorithms, logic) or the social or medical
sciences (e.g. statistics, probability). (If you know somebody who was in
elementary school in the U.S. in the post-Sputnik era, try and ask if they
had to learn “New Math,” which started with set theory.)

The mathematics courses that we require all Techers to take are oriented
towards giving future scientists and engineers and its ultimate goal is to give
you a taste of what it means to think like a mathematician, so that you can
take this out of your mental toolbox and use it when you need it in life. The
task won’t be easy, but it certainly can be done, and we can do so we have
some fun along the way.

My name is Brian, and I’ll be your Lead TA for Math 1a, Sec. 1 this
quarter. Since this is a fairly large class, we also have the assistance of
Gahye, who will also hold office hours. Here are the office hours for this
class.

Date: October 1, 2016.
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• Prof. Hadian-Jazi: Wednesdays, 4–5pm, 258 Sloan
• Gahye: Saturdays, 4–5pm, 385 Sloan
• Brian: Sundays, 9–10pm, 158 Sloan

(Note the curious symmetry in our office numbers.) I will also be available
right after recitation, if you want to talk about anything.

Homework are due Monday afternoons. The course policy is not to accept
any unexcused late homeworks, but if you really need it, don’t be afraid to
ask for help from the Dean or somebody else in that capacity. You don’t
need to be sick or dying to ask for one. We’re really here to help you out
and learn.

My philosophy for recitations is as follows. I will be ruthlessly practical
and emphasize the ideas and methods you need in order to do your home-
work. I will leave the development of the theory to the lectures, and instead
emphasize the quick and dirty techniques that will help you consolidate the
knowledge from this week and apply them to the assigned problems.

You don’t need to be taking copious notes, because I will post some notes
on my website:

http://hwang.caltech.edu/ma1/

It’s better to stay engaged with the flow of the class than simply try to write
down everything; I’ve found the best way is to simply take minimal notes to
keep my attention, then try and fill in the details on my own later, referring
to the “official” notes if I get stuck or confused.

2. Basic Proof Techniques

The biggest difference between mathematics and other fields of study is
the notion of a mathematical proof. It’s hard to say precisely what a proof
is (give it a shot1), but as a first approximation, it is a chain of logical
statements that start with your assumptions and end with your desired
conclusion. Hopefully, by seeing examples, you will internalize what this
really means.

In this section, we study four basic methods of proof. We will use all of
these in this class. In all cases, we want to prove that “P => Q”, that is, a
statement of the form “If P , then Q.”

2.1. Direct Proofs. Direct proofs are, as the name suggests, the most
obvious way to show that “P => Q”. Namely,

(1) Assume that P is true.
(2) Use P to show that Q must be true.

Here’s an example of a direct proof.

Proposition 2.1. If m and n are consecutive natural numbers, then m+n
is odd.

1but an answer is probably as unhelpful or as circular as defining what “mathematics”
means
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Proof. Since m and n are consecutive natural numbers, we can write n =
m + 1.Therefore, we have

m + n = m + (m + 1) = 2m + 1.

Since m is a natural number, 2m + 1 = m + n is odd. �

2.2. Proof by Contradiction (Reductio ad absurdum, if you want
to be fancy). Here we want to prove “P ⇒ Q” in a slightly funny way.

(1) Assume that P is true.
(2) Assume that ¬Q (“not Q”) is true.
(3) Use P and ¬Q to demonstrate a contradiction.

Here’s an example of this in action.

Theorem 2.2. There are two irrational numbers a and b such that ab is
rational.

“Proof with inner monologue”. We will prove our statement by contradic-
tion. To do this, we first assume that the negation of our theorem holds. In
other words, we start off our proof by assuming the following hypothesis:

There are no irrational numbers a and b such that ab is rational.

What do we do from here? Well, let’s try throwing in numbers we know
to be irrational into the above statement! Specifically, let’s try setting both
a and b equal to

√
2, which we know is irrational. Our hypothesis then tells

us that
√

2
√
2

is irrational.

OK. What do we do now? Well, the only thing we really have is our
assumption, our knowledge that

√
2 is irrational, and our new belief that

√
2
√
2

is also irrational. The only thing we can really do is pick a =
√

2
√
2
,

b =
√

2, and apply our hypothesis again. However, this will work! On one
hand, our we have that ab is irrational by our hypothesis. On the other
hand, we have that ab is equal to(√

2

√
2
)√2

=
√

2

√
2·
√
2

=
√

2
2

= 2,

which is clearly rational. This is a contradiction! Therefore, we know that
our hypothesis must be false: there must be a pair of irrational numbers a, b
such that ab is rational. �

Remark 1. An interesting quirk of the above proof is that it didn’t actually
give us a pair of irrational numbers a, b such that ab is rational! It simply
told us that either

•
√

2
√
2

is rational, in which case a = b =
√

2 is an example, or

•
√

2
√
2

irrational, in which case a =
√

2
√
2
, b =

√
2 is an example,
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but it never actually tells us which pair satisfies our claim! This is a weird
property of proofs by contradiction: they are often nonconstructive proofs,
in that they will tell you that a statement is true or false without necessarily
giving you an example that demonstrates the truth of that statement.

Remark 2. Can you write the statement above as an “P ⇒ Q” statement?

2.3. Proof by Contrapositive. When do you want to use a proof by con-
trapositive? Sometimes, proving “P ⇒ Q” directly is tricky: maybe P is a
really subtle condition to start from, and we would prefer to start working
from the other end of this implication. How can we do this?

Via the contrapositive! Specifically, if we have a statement of the form
P =⇒ Q, the contrapositive of this statement is simply the statement

¬Q⇒ ¬P .

The nice thing about the contrapositive of any statement is that it’s
logically equivalent to the original statement! For example, if our statement
was “all Techers are adorable,” the contrapositive of our claim would be the
statement “all nonadorable things are not Techers.” These two statements
clearly express the same meaning – one just starts out by talking about
Techers, while the other starts out by talking about nonadorable things. So,
if we want to prove a statement P =⇒ Q, we can always just prove the
contrapositive ¬Q⇒ ¬P instead, because they’re the same thing! This can
allow us to switch from relatively difficult starting points (situations where
P is hard to work with) to easier ones (situations where ¬Q is easy to work
with.)

In summary, you can apply the technique of proof by contrapositive as
follows:

(1) Assume ¬Q.
(2) Use ¬Q to show that ¬P holds.

Remark 3. As you can see, proof by contrapositive is a close cousin of the
proof by contradiction. Indeed, one way to demonstrate contradiction in
Step (3) of the proof by contradiction is to show that both P and ¬P hold,
which cannot occur!

To illustrate this, consider the following example:

Theorem 2.3. If n ≡ 2 mod 3 (i.e. that n − 2 is a multiple of 3), then
n is not a square: in other words, we cannot find any integer k such that
k2 = n.

Proof. A direct approach to this problem looks hard. Basically, if we were
to prove this problem directly, we would take any n ≡ 2 mod 3 – i.e. any
n of the form 3m + 2, for some integer m – and try to show that this can
never be a square. Basically, we’d be looking at the equation k2 = 3m + 2
and trying to show that there are no solutions to this equation, which looks
pretty nasty.
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Since we are mathematicians, when presented with a tricky-looking prob-
lem, our instincts should be to try to make it trivial: in other words, to
attempt different proof methods and ideas until one seems to “fit” our ques-
tion. Let’s look at the contrapositive of our statement:

If n is a square, then n 6≡ 2 mod 3.

Equivalently, because every number is equivalent to either 0, 1, or 2 mod 3,
we’re trying to prove the following:

If n is a square, then n ≡ 0 or 1 mod 3.

This looks much easier! – the initial condition is really easy to work with,
and the later condition is rather easy to check.

Now that we have some confidence in our ability to prove our theorem,
we proceed with the actual work: take any square n, and express it as k2,
for some natural number k. We can break k into three cases:

(1) k ≡ 0 mod 3. In this case, we have that k ≡ 3m for some m, which
means that k2 = 9m2 = 3(3m2) is also a multiple of 3. Thus, k2 ≡ 0
mod 3.

(2) k ≡ 1 mod 3. In this case, we have that k ≡ 3m + 1 for some m,
which means that k2 = 9m2 + 6m + 1 = 3(3m2 + 2m) + 1. Thus,
k2 ≡ 1 mod 3.

(3) k ≡ 2 mod 3. In this case, we have that k ≡ 3m + 2 for some m,
which means that k2 = 9m2 +12m+4 = 3(3m2 +4m+1)+1. Thus,
k2 ≡ 1 mod 3.

Therefore, we’ve shown that k2 isn’t congruent to 2 mod 3, for any k. So
we’ve proven our claim! �

2.4. Proofs by Induction. Sometimes, in mathematics, we will want to
prove the truth of some statement P (n) that depends on some variable n.
For example:

• P (n) = “The sum of the first n natural numbers is n(n+1)
2 .”

• P (n) = “If q ≥ 2, we have n ≤ qn.
• P (n) = “Every polynomial of degree n has at most n roots.”

For any fixed n, we can usually use our previously-established methods
to prove the truth or falsity of the statement. However, sometimes we will
want to prove that one of these statements holds for every value n ∈ N.
How can we do this?

One method for proving such claims for every n ∈ N is to use mathemat-
ical induction.

(1) Prove our statement in the base case, that is, show that P (1) is
true.

(2) (Induction/Inductive step) Assume that P (k) holds, and use this
show that P (k + 1) holds.
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The intuitive reason why this works is as follows. Since we’ve established
the base case, by applying the induction step over and over again, we see
that

P (1)⇒ P (2)⇒ P (3)⇒ · · ·
and so prove our statement for all n ∈ N. The real reason why this works is
that the principle of mathematical induction is rooted in the well-ordering
principle, which was briefly discussed in class.

You’ll get a lot of practice with this proof technique on the homework,
but just so you’re not confused, we’ll go through a very simple application
of proof by induction.

Proposition 2.4. If q ≥ 2, then n ≤ qn for all n ≥ 0.

Proof. Base case. For the n = 0 case, we have

0 ≤ q0 = 1,

so the statement holds in this case. For n = 1, we also have

1 ≤ q1 = q

since q ≥ 2.
Inductive step. Assume that k ≤ qk (the induction hypothesis). We want

to show that k + 1 ≤ qk+1.
By adding 1 to each side of the equality in the induction hypothesis, we

have
k + 1 ≤ qk + 1.

To prove our statement, it is enough to prove the following lemma.

Lemma. We have qk + 1 ≤ qk+1.
Proof of Lemma. Since q ≥ 2, we have

1 +
1

qk
≤ 2 ≤ q.

Thus, by multiplying through by qk, we obtain

qk + 1 ≤ qk+1

as desired.

Thus, by the lemma,
k + 1 ≤ qk + 1 ≤ qk+1

as desired.
By the principle of mathematical induction, the inequality holds for all

n ≥ 0. �
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3. A Puzzle

Here’s an interesting logic puzzle, related to some of proof techniques.
Clearly the statement is false, but where does it go wrong?

Proposition 3.1. There exists a unicorn.

“Proof.”. To prove there is a unicorn, it is enough to prove the (possibly)
stronger statement that there exists an existing unicorn (i.e. a unicorn which
exists). Namely, if there exists an existing unicorn, then there must exist a
unicorn.

There are exactly two possibilities:

(1) an existing unicorn exists.
(2) an existing unicorn does not exist.

The second possibility is contradictory (how could an existing unicorn not
exist? Just as a blue unicorn is necessarily blue, an existing unicorn must
necessarily exist). Thus the first possibility must hold: an existing unicorn
must exist. �

What is the problem with this proof?
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