
MA 1: SESSION 4

1. The Definition of a Limit

The first thing we need to do is to give a rigorous definition of what the
limit is.

Definition 1.1. Let {an}∞n=1 be a sequence of (real) numbers. We say that

lim
n→∞

an = L

if for all ε > 0, there exists an N = Nε ∈ N such that for all n > N , we
have |an − L| < ε.

The simplest way to show that a sequence converges is sometimes just
to use the definition of convergence, that is, you want to show that for any
distance ε > 0, you can force the an’s to be within ε of our limit, for n
sufficiently large.

How should we use the definition? Here’s one method.

• Examine the quantity |an−L|, and try to come up with a very simple
upper bound that depends on n and goes to zero. Example bounds
we’d love to run into: 1/n, 1/n2, 1/ log(log(n)).
• Using this simple upper bound, given ε > 0, determine a value of N

such that whenever n > N , our simple bound is less than ε. This is
usually pretty easy: because these simple bounds go to 0 as n gets
large, there’s always some value of N such that for any n > N , these
simple bounds are as small as we want.
• Combine the two above results to show that for any ε, you can find

a cutoff point N such that for any n > N , |an − L| < ε.

Example 1. Show that

lim
n→∞

[√
n+ 1−

√
n
]

= 0.

Solution. Let’s try and prove convergence directly using our method above:
(a) start with |an−L|, (b) try to find a simple upper bound on this quantity
depending on n, and (c) use this simple bound to find for any ε a value of
N such that whenever n > N , we have

|an − L| < (simple upper bound) < ε.
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Let’s look at the quantity |
√
n+ 1−

√
n− 0|:

|
√
n+ 1−

√
n− 0| =

√
n+ 1−

√
n

=
(
√
n+ 1−

√
n)(
√
n+ 1 +

√
n)√

n+ 1 +
√
n

=
n+ 1− n√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n

<
1√
n
.

All we did here was hit our |an − L| with some algebra, and kept trying
things until we got something simple. The specifics aren’t as important as
the idea here: just start with the |an − L| bit, and try everything until it’s
bounded by something simple and small!

In our specific case, we’ve acquired the upper bound 1√
n

, which looks

rather simple: so let’s see if we can use it to find a value of N .
Take any ε > 0. If we want to make our simple bound 1√

n
< ε, this is

equivalent to making 1
ε <
√
n, i.e 1

ε2
< n. So, if we pick N > 1

ε2
, we know

that whenever n > N , we have n > 1
ε2

, and therefore that our simple bound
is < ε. But this is exactly what we wanted!

In specific, for any ε > 0, we’ve found a N such that for any n > N , we
have

|
√
n+ 1−

√
n− 0| < 1√

n
<

1√
N
< ε,

which is the definition of convergence. So we’ve proven that limn→∞
√
n+ 1−√

n = 0. �

Let’s see how you should write this up.

Proof. Let ε > 0. Pick N > 1
ε2

. Then for all n > N , we have

|
√
n+ 1−

√
n− 0| = [algebra steps from above] <

1√
n
<

1√
N
< ε.

�

That’s all you need.

For sequences, we’re taking the limit over natural numbers, but what
we’re really interested in are limits for functions.

Definition 1.2. Given a function f : R→ R, we say that

lim
x→c

f(x) = L
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if for any ε > 0 there exists a δ = δε > 0 such that for all x such that
|x− c| < δ, we have |f(x)− L| < ε.

The definition is just the natural generalization of the notion for sequences
above.

Here are some general facts about limits (they also apply to limits of
sequences).

Proposition 1.3. (“Arithmetic of limits”) [Apostol Theorem 3.1] Let f and
g be functions such that limx→p f(x) = A and limx→p g(x) = B. Then

(1) limx→p[f(x) + g(x)] = A+B,
(2) limx→p[f(X)− g(x)] = A−B,
(3) limx→p f(x) · g(X) = A ·B,
(4) limx→p f(x)/g(x) = A/B if B 6= 0.

2. Continuous Functions

With the definition of limits of functions at certain points in hand, we
can now define the fundamental objects of study in a single-variable calculus
course.

Definition 2.1. A function f : R→ R is continuous at a ∈ R if for every
ε > 0 there exists a δ = δε > 0 such that for all x ∈ R such that |x− a| < δ,
we have |f(x)− f(a)| < ε. In other words, if limx→a f(x) = f(a).

We say that f is continuous on [a, b] if it is continuous at all x ∈ [a, b].
If [a, b] = R, we say simply that f is continuous.

If you haven’t seen this definition before, it’s a lot of absorb at once. But
I’ll try and illustrate it.

This definition is a little strange, isn’t it? At least, the ε − δ “rigorous”
definition is somewhat strange: how do these weird symbols connect with
the rather simple concept of “as x approaches a, f(x) approaches f(a)”? To
see this a bit better, consider the following image:

b

A

b+δ

A+ϵ

A-ϵ

b-δ
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An easy corollary of the “arithmetic of limits” properties we mentioned
before is the following result.

Proposition 2.2. If f and g are functions that are continuous at p, then
the sum f + g, the difference, f − g, and the product f · g are continuous at
p. Furthermore, if g(p) 6= 0, the quotient f/g is also continuous at p.

The graph above shows pictorially what’s going on in our “rigorous” def-
inition of limits and continuity: essentially, to rigorously say that “as x
approaches a, f(x) approaches f(a)”, we are saying that

• for any distance ε around f(a) that we’d like to keep our function,
• there is a neighborhood (a− δ, a+ δ) around a such that
• if f takes only values within this neighborhood (a−δ, a+δ) , it stays

within ε of f(a).

Basically, what this definition says is that if you pick values of x sufficiently
close to a, the resulting f(x)’s will be as close as you want to be to f(a) –
i.e. that “as x approaches a, f(x) approaches f(a).”

This, hopefully, illustrates what our definition is trying to capture – a
concrete notion of something like convergence for functions, instead of se-
quences of real numbers. So: how can we prove that a function f has some
given limit L? Motivated by this analogy to sequences, we have the following
method to prove that limx→a f(x) = L straight from the definition:

(1) First, examine the quantity

|f(x)− L|.

Using algebra/cleverness, try to find a simple upper bound for this
quantity of the form

(things bounded when x is near a) · (function based on|x− a|).

Some sample candidates: things like |x−a| · (constants), or |x−a|3 ·
(bounded functions like sin(x)).

(2) Take your bounded part, and bound it! In other words, find a
constant bound C > 0 and a value δ1 > 0 such that whenever x is
within δ1 of a, we have

(bounded things) < C.

(3) Take your function based on |x − a| and your constant C from the
above step, and starting from the equation

(function based on |x− a|) < ε

C
,

solve for |x − a| in terms of ε and C, by performing only reversible
steps. This then gives you some equation of the form

|x− a| < (thing in terms of C, ε’s).

Define δ2 to be this “thing in terms of C, ε’s.”
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(4) Let δ = min(δ1, δ2). Then, whenever |x−a| < δ, we have just proven
that we satisfy both the equations

(bounded things) < C, and

(function in |x− a|) < ε

C
.

If we combine these observations with the simple bound we derived
in our first step, we’ve proven that whenever |x− a| < δ, we have

|f(x)− L| < (bounded things)(|x− a| things) < C · ε
C

= ε.

But this is exactly what we wanted to prove – this is the ε − δ
definiton of a limit! So we are done.

The following example ought to illustrate what we’re talking about here:

Example 2. The function 1
x2

is continuous at every point a 6= 0.

Proof. We want to prove that limx→a
1
x2

= 1
a2

, for any a 6= 0.
We proceed according to our blueprint:

(1) First, we examine the quantity
∣∣ 1
x2
− 1

a2

∣∣:∣∣∣∣ 1

x2
− 1

a2

∣∣∣∣ =

∣∣∣∣ a2

a2x2
− x2

a2x2

∣∣∣∣
=

∣∣∣∣a2 − x2a2x2

∣∣∣∣
=

∣∣∣∣(a− x)(a+ x)

a2x2

∣∣∣∣
= |a− x| ·

∣∣∣∣(a+ x)

a2x2

∣∣∣∣
= |x− a| ·

∣∣∣∣(a+ x)

a2x2

∣∣∣∣ .
By algebraic simplification, we’ve broken our expression into two
parts: one of which is |x − a|, and the other of which is bounded
near x = a.

For values of x rather close to a, because a 6= 0, we can bound
this as follows: pick x such that x is within a/2 of a. Then we have∣∣∣∣(a+ x)

a2x2

∣∣∣∣ ≤ ∣∣∣∣(a+ (3a/2))

a2x2

∣∣∣∣
≤

∣∣∣∣(a+ (3a/2))

a2(a/2)2

∣∣∣∣
=

∣∣∣∣10

a3

∣∣∣∣
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which is some nicely bounded constant. So, when we pick our δ, if
we just make sure that δ < a/2, we know that we have this quite
simple and excellent upper bound∣∣∣∣(a+ x)

a2x2

∣∣∣∣ < ∣∣∣∣10

a3

∣∣∣∣ .
(2) So: we have bounded the bounded part by

∣∣ 10
a3

∣∣. Now, we want to
take the remaining |x − a| part, which is exactly |x − a|, and solve
the equation

|x− a| < ε

10/a3
=
a3ε

10

for |x − a|, given any arbitrary ε > 0. Conveniently, this is already
done! In fact, if we’re using our blueprint and we can make our
“function in terms of |x − a|” precisely |x − a|, this is always this

easy. Therefore, if we set δ2 = a3ε
10 , then whenever |x − a| < δ2, we

have

|x− a| < ε

10/a3
=
a3ε

10
.

(3) Now, set δ = min(δ1, δ2). Then, whenever |x− a| < δ, we have

|f(x)− L| ≤ |x− a| ·
∣∣∣∣(a+ x)

a2x2

∣∣∣∣ < 10

a3
· a

3ε

10
= ε,

which is precisely what we needed to show to satisfy the ε− δ defi-
nition of a limit. Therefore, we have proven that limx→a

1
x2

= 1
a2

for
any a 6= 0, as desired.

�
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