MA 1: SESSION 4

1. The Definition of a Limit

The first thing we need to do is to give a rigorous definition of what the limit is.

Definition 1.1. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of (real) numbers. We say that

$$\lim_{n \to \infty} a_n = L$$

if for all $\epsilon > 0$, there exists an $N = N_{\epsilon} \in \mathbf{N}$ such that for all n > N, we have $|a_n - L| < \epsilon$.

The simplest way to show that a sequence converges is sometimes just to use the definition of convergence, that is, you want to show that for any distance $\epsilon > 0$, you can force the a_n 's to be within ϵ of our limit, for nsufficiently large.

How should we use the definition? Here's one method.

1

- Examine the quantity $|a_n L|$, and try to come up with a very simple upper bound that depends on n and goes to zero. Example bounds we'd love to run into: $1/n, 1/n^2, 1/\log(\log(n))$.
- Using this simple upper bound, given $\epsilon > 0$, determine a value of N such that whenever n > N, our simple bound is less than ϵ . This is usually pretty easy: because these simple bounds go to 0 as n gets large, there's always some value of N such that for any n > N, these simple bounds are as small as we want.
- Combine the two above results to show that for any ϵ , you can find a cutoff point N such that for any n > N, $|a_n L| < \epsilon$.

Example 1. Show that

$$\lim_{n \to \infty} \left[\sqrt{n+1} - \sqrt{n} \right] = 0.$$

Solution. Let's try and prove convergence directly using our method above: (a) start with $|a_n - L|$, (b) try to find a simple upper bound on this quantity depending on n, and (c) use this simple bound to find for any ϵ a value of N such that whenever n > N, we have

$$|a_n - L| < (\text{simple upper bound}) < \epsilon.$$

Date: October 22, 2016.

Let's look at the quantity $|\sqrt{n+1} - \sqrt{n} - 0|$:

$$\begin{aligned} |\sqrt{n+1} - \sqrt{n} - 0| &= \sqrt{n+1} - \sqrt{n} \\ &= \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} \\ &= \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} \\ &= \frac{1}{\sqrt{n+1} + \sqrt{n}} \\ &< \frac{1}{\sqrt{n}}. \end{aligned}$$

All we did here was hit our $|a_n - L|$ with some algebra, and kept trying things until we got something simple. The specifics aren't as important as the idea here: just start with the $|a_n - L|$ bit, and try everything until it's bounded by something simple and small!

In our specific case, we've acquired the upper bound $\frac{1}{\sqrt{n}}$, which looks rather simple: so let's see if we can use it to find a value of N.

Take any $\epsilon > 0$. If we want to make our simple bound $\frac{1}{\sqrt{n}} < \epsilon$, this is equivalent to making $\frac{1}{\epsilon} < \sqrt{n}$, i.e $\frac{1}{\epsilon^2} < n$. So, if we pick $N > \frac{1}{\epsilon^2}$, we know that whenever n > N, we have $n > \frac{1}{\epsilon^2}$, and therefore that our simple bound is $< \epsilon$. But this is exactly what we wanted!

In specific, for any $\epsilon > 0$, we've found a N such that for any n > N, we have

$$|\sqrt{n+1} - \sqrt{n} - 0| < \frac{1}{\sqrt{n}} < \frac{1}{\sqrt{N}} < \epsilon,$$

which is the definition of convergence. So we've proven that $\lim_{n\to\infty} \sqrt{n+1} - \sqrt{n} = 0$.

Let's see how you should write this up.

Proof. Let $\epsilon > 0$. Pick $N > \frac{1}{\epsilon^2}$. Then for all n > N, we have

$$|\sqrt{n+1} - \sqrt{n} - 0| = [\text{algebra steps from above}] < \frac{1}{\sqrt{n}} < \frac{1}{\sqrt{N}} < \epsilon.$$

That's all you need.

For sequences, we're taking the limit over natural numbers, but what we're really interested in are limits for functions.

Definition 1.2. Given a function $f : \mathbf{R} \to \mathbf{R}$, we say that

$$\lim_{x \to c} f(x) = L$$

if for any $\epsilon > 0$ there exists a $\delta = \delta_{\epsilon} > 0$ such that for all x such that $|x - c| < \delta$, we have $|f(x) - L| < \epsilon$.

The definition is just the natural generalization of the notion for sequences above.

Here are some general facts about limits (they also apply to limits of sequences).

Proposition 1.3. ("Arithmetic of limits") [Apostol Theorem 3.1] Let f and g be functions such that $\lim_{x\to p} f(x) = A$ and $\lim_{x\to p} g(x) = B$. Then

(1) $\lim_{x \to p} [f(x) + g(x)] = A + B,$ (2) $\lim_{x \to p} [f(X) - g(x)] = A - B,$ (3) $\lim_{x \to p} f(x) \cdot g(X) = A \cdot B,$

(4) $\lim_{x \to p} f(x)/g(x) = A/B \text{ if } B \neq 0.$

2. Continuous Functions

With the definition of limits of functions at certain points in hand, we can now define the fundamental objects of study in a single-variable calculus course.

Definition 2.1. A function $f : \mathbf{R} \to \mathbf{R}$ is continuous at $a \in \mathbf{R}$ if for every $\epsilon > 0$ there exists a $\delta = \delta_{\epsilon} > 0$ such that for all $x \in \mathbf{R}$ such that $|x - a| < \delta$, we have $|f(x) - f(a)| < \epsilon$. In other words, if $\lim_{x \to a} f(x) = f(a)$.

We say that f is **continuous on** [a, b] if it is continuous at all $x \in [a, b]$. If $[a, b] = \mathbf{R}$, we say simply that f is **continuous**.

If you haven't seen this definition before, it's a lot of absorb at once. But I'll try and illustrate it.

This definition is a little strange, isn't it? At least, the $\epsilon - \delta$ "rigorous" definition is somewhat strange: how do these weird symbols connect with the rather simple concept of "as x approaches a, f(x) approaches f(a)"? To see this a bit better, consider the following image:

An easy corollary of the "arithmetic of limits" properties we mentioned before is the following result.

Proposition 2.2. If f and g are functions that are continuous at p, then the sum f + g, the difference, f - g, and the product $f \cdot g$ are continuous at p. Furthermore, if $g(p) \neq 0$, the quotient f/g is also continuous at p.

The graph above shows pictorially what's going on in our "rigorous" definition of limits and continuity: essentially, to rigorously say that "as x approaches a, f(x) approaches f(a)", we are saying that

- for any distance ϵ around f(a) that we'd like to keep our function,
- there is a neighborhood $(a \delta, a + \delta)$ around a such that
- if f takes only values within this neighborhood $(a \delta, a + \delta)$, it stays within ϵ of f(a).

Basically, what this definition says is that if you pick values of x sufficiently close to a, the resulting f(x)'s will be as close as you want to be to f(a) – i.e. that "as x approaches a, f(x) approaches f(a)."

This, hopefully, illustrates what our definition is trying to capture – a concrete notion of something like convergence for *functions*, instead of sequences of real numbers. So: how can we prove that a function f has some given limit L? Motivated by this analogy to sequences, we have the following method to prove that $\lim_{x\to a} f(x) = L$ straight from the definition:

(1) First, examine the quantity

$$|f(x) - L|.$$

Using algebra/cleverness, try to find a simple upper bound for this quantity of the form

(things bounded when x is near a) \cdot (function based on |x - a|).

Some sample candidates: things like $|x - a| \cdot (\text{constants})$, or $|x - a|^3 \cdot (\text{bounded functions like } \sin(x))$.

(2) Take your bounded part, and **bound** it! In other words, find a constant bound C > 0 and a value $\delta_1 > 0$ such that whenever x is within δ_1 of a, we have

(bounded things)
$$< C$$
.

(3) Take your function based on |x - a| and your constant C from the above step, and starting from the equation

(function based on
$$|x-a|$$
) $< \frac{\epsilon}{C}$,

solve for |x - a| in terms of ϵ and C, by performing only reversible steps. This then gives you some equation of the form

 $|x-a| < (\text{thing in terms of } C, \epsilon's).$

Define δ_2 to be this "thing in terms of C, ϵ 's."

(4) Let $\delta = \min(\delta_1, \delta_2)$. Then, whenever $|x - a| < \delta$, we have just proven that we satisfy both the equations

(bounded things)
$$< C$$
, and
(function in $|x - a|$) $< \frac{\epsilon}{C}$.

If we combine these observations with the simple bound we derived in our first step, we've proven that whenever $|x - a| < \delta$, we have

$$|f(x) - L| < (\text{bounded things})(|x - a| \text{ things}) < C \cdot \frac{\epsilon}{C} = \epsilon$$

But this is exactly what we wanted to prove – this is the $\epsilon - \delta$ definiton of a limit! So we are done.

The following example ought to illustrate what we're talking about here:

Example 2. The function $\frac{1}{x^2}$ is continuous at every point $a \neq 0$.

Proof. We want to prove that $\lim_{x\to a} \frac{1}{x^2} = \frac{1}{a^2}$, for any $a \neq 0$. We proceed according to our blueprint:

(1) First, we examine the quantity $\left|\frac{1}{x^2} - \frac{1}{a^2}\right|$:

$$\frac{1}{x^2} - \frac{1}{a^2} \bigg| = \bigg| \frac{a^2}{a^2 x^2} - \frac{x^2}{a^2 x^2} \bigg|$$
$$= \bigg| \frac{a^2 - x^2}{a^2 x^2} \bigg|$$
$$= \bigg| \frac{(a - x)(a + x)}{a^2 x^2} \bigg|$$
$$= |a - x| \cdot \bigg| \frac{(a + x)}{a^2 x^2} \bigg|$$
$$= |x - a| \cdot \bigg| \frac{(a + x)}{a^2 x^2} \bigg|$$

By algebraic simplification, we've broken our expression into two parts: one of which is |x - a|, and the other of which is bounded near x = a.

For values of x rather close to a, because $a \neq 0$, we can bound this as follows: pick x such that x is within a/2 of a. Then we have

$$\frac{(a+x)}{a^2x^2} \leq \left| \frac{(a+(3a/2))}{a^2x^2} \right|$$
$$\leq \left| \frac{(a+(3a/2))}{a^2(a/2)^2} \right|$$
$$= \left| \frac{10}{a^3} \right|$$

which is some nicely bounded constant. So, when we pick our δ , if we just make sure that $\delta < a/2$, we know that we have this quite simple and excellent upper bound

$$\left|\frac{(a+x)}{a^2x^2}\right| < \left|\frac{10}{a^3}\right|.$$

(2) So: we have bounded the bounded part by $\left|\frac{10}{a^3}\right|$. Now, we want to take the remaining |x - a| part, which is exactly |x - a|, and solve the equation

$$|x-a| < \frac{\epsilon}{10/a^3} = \frac{a^3\epsilon}{10}$$

for |x - a|, given any arbitrary $\epsilon > 0$. Conveniently, this is already done! In fact, if we're using our blueprint and we can make our "function in terms of |x - a|" precisely |x - a|, this is always this easy. Therefore, if we set $\delta_2 = \frac{a^3\epsilon}{10}$, then whenever $|x - a| < \delta_2$, we have

$$|x-a| < \frac{\epsilon}{10/a^3} = \frac{a^3\epsilon}{10}$$

(3) Now, set $\delta = \min(\delta_1, \delta_2)$. Then, whenever $|x - a| < \delta$, we have

$$|f(x) - L| \le |x - a| \cdot \left| \frac{(a + x)}{a^2 x^2} \right| < \frac{10}{a^3} \cdot \frac{a^3 \epsilon}{10} = \epsilon_1$$

which is precisely what we needed to show to satisfy the $\epsilon - \delta$ definition of a limit. Therefore, we have proven that $\lim_{x\to a} \frac{1}{x^2} = \frac{1}{a^2}$ for any $a \neq 0$, as desired.

г			ъ
L			L
L			L
L.,	_	_	л