
MA 1: SESSION 5

1. Announcements

You should have picked up your midterms by now. If not, go to the math
office immediately tomorrow, and make sure that they have copies, or ask
Prof. Hadian.

The midterm is open book, open notes, and you may refer to the prob-
lem statements for homeworks, but not your own solutions or the solutions
posted online. You also may not discuss the exam with anybody once you
begin (except Prof. Hadian), including me, so take that into consideration
before you begin.

2. Epsilon-Delta Proofs

Example 1. Suppose that x, y ∈ R have the property that |x − y| < ε for
every ε > 0. Show that x = y.

Proof. Suppose x 6= y. Then |x − y| = a > 0. We have a positive real
number b such that a > b > 0. Since b > 0, by assumption |x− y| < b. But
then we have a contradiction since this implies that

a = |x− y| < b.

Hence, we must have x = y. �

Example 2. Use an ε-δ proof to show that f(x) = x3 is continuous at
x = 2.

Proof. In other words, we need to show that limx→2 x
3 = 8.

Let ε > 0. We want to find a δ > 0 such that for any x ∈ R with
0 < |x− 2| < δ forces |x3 − 8| < ε. We claim that

δ = min
{ ε

19
, 1
}

works. To see this, suppose that |x− 2| < δ. Then

|x3 − 8| = |x− 2||x2 + 2x+ 4|
< |x− 2|19 since |x2 + 2x+ 4| < 19 if |x− 2| < 1

<
ε

19
· 19

= ε.

�
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This is what you should write. But how did we find such a value of δ? Of
course, we worked backwards from |x3 − 8| and didn’t choose a δ until we
obtained an expression for |x− 2|. (See Session 4 notes.)

3. Integration

Proposition 3.1. If f : [a, b]→ R is continuous, then it is integrable.

Proof. To show f is integrable, we need to show that for all ε > 0, we have

inf
P
U(P, f)− sup

P
L(P, f) < ε

where the limit runs over all partitions P of [a, b].
Apostol Theorem III.13 says that if f is continuous on [a, b], then for

every ε0 > 0, there is a partition of [a, b] into a finite number of subintervals
such that max(f)−min(f) on each subinterval is less than ε0.

Given a partition P = {x1, . . . , xn−1} We have

U(P, f)− L(P, f) =
n−1∑
i=0

(
sup

x∈(xi,xi+1)
f(x)− inf

x∈(xi,xi+1)
f(x)

)
(xi+1 − xi).

By the theorem above, give any ε0 < 0, there exists a partition P0 = Pε0
such that

U(P0, f)− L(P0, f) ≤ ε0
m−1∑
i=0

(xi+1 − xi) = ε0(b− a).

Thus, set ε0 = ε/(b − a) > 0, which gives us a partition P ′′ such that
U(P ′′, f)− L(P ′′, f) < ε, showing that f is integrable. �

4. Limit Manipulation

Example 3. Let x, y be a pair of positive real numbers such that x < y.
Show that

lim
n→∞

(xn + yn)1/n = y.

Proof. This time, let’s apply the squeeze theorem. Specifically, notice that

y = (yn)1/n < (xn + yn)1/n < (yn + yn)1/n = 21/ny.

Therefore, because

lim
n→∞

y = y

and

lim
n→∞

21/ny = y · lim
n→∞

21/n = y · 1 = y,

the squeeze theorem tells us that

lim
n→∞

(xn + yn)1/n = y

as well. �
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5. Thomae’s Function

Example 4 (Thomae’s Function a.k.a the popcorn function). Let f(x) be
the function defined as follows:

f(x) =

{
1
q if x = p

q where p and q are relatively prime integers with q > 0

0 x is irrational

Show that f(x) is continuous at every irrational number and discontinuous
at every rational number.

Proof. The question is asking us to prove two things: 1. when x is irrational,
f is continuous at x; and 2. when x is rational, f is not continuous at x.
Let’s first prove that f is continuous at irrational numbers.

Let x be irrational. Then, we first note that f(x) = 0.
Now, let ε > 0. Choose a natural number m large enough so that 1

m < ε.

Then, x lies in a unique interval of the form
(
k
m ,

k+1
m

)
, say x ∈

(
K
m ,

K+1
m

)
.

Note that for all n ≤ m, there can be at most 1 number of the form
r
n ∈

(
K
m ,

K+1
m

)
. Why? Suppose r

n ,
s
n ∈

(
K
m ,

K+1
m

)
. Then, we have

| rn −
s
n | < |K+1

m − K
m |

⇒ |r−s|
n < 1

m
⇒ 1

n < 1
m

⇒ n > m

But this contradicts our assumption that n ≤ m. Hence, there is at most
one number of the form r

n ∈
(
K
m ,

K+1
m

)
.

In particular, this implies that there are finitely many rational numbers
p
q ∈

(
K
m ,

K+1
m

)
in the reduced form where q ≤ m (We showed above that,

in fact, there can be at most m such numbers). Denote these numbers
p1, . . . , ps and let

δ = min(|x− p1|, . . . , |x− ps|)
We claim that for all y with |x− y| < δ we have |f(x)− f(y)| < ε. We can
divide this in two cases: Y can be irrational or rational.

Suppose y is an irrational number with |x− y| < δ. Then,

|f(x)− f(y)| = |0− 0| = 0 < ε

Now suppose y is a rational number with |x − y| < δ. Since y is rational,
we can write y = p

q . But since y is closer to x than any of p1, . . . , ps, we

conclude q > m (we chose δ = min(|x − p1|, . . . , |x − ps|) precisely to make
this happen!). Therefore, we have the following

|f(x)− f(y)| =
∣∣∣∣0− 1

q

∣∣∣∣ =
1

q
<

1

m
< ε

Combining these two cases, we see that |x−y| < δ implies |f(x)−f(y)| < ε.
Hence, f is continuous at x.

Now, let’s prove that f is not continuous at every rational numbers.
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Let x = p
q be a rational number. Then, f(x) = 1

q . To show that f is not

continuous at x, we have to find some value of ε > 0 for which we cannot
find a δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ε.

Consider ε = 1
q . I claim that for this value of ε, we can’t find a value of

δ satisfying the conditions of the definition.
Let’s prove this by contradiction. Suppose there exists δ > 0 such that

|x − y| < δ implies |f(x) − f(y)| < ε. However, note that since δ > 0, the
interval (x− δ, x+ δ) contains an irrational number, say y ∈ (x− δ, x+ δ).
Now, for this y we have |x− y| < δ. However, since y is irrational,

|f(x)− f(y)| =
∣∣∣∣1q − 0

∣∣∣∣ =
1

q
6< ε =

1

q

This is a contradiction! Hence, we conclude that for ε = 1
q , there does not

exist δ > 0 such that |x − y| < δ ⇒ |f(x) − f(y)| < ε. Therefore, f is not
continuous at every rational number. �

6. Theory Questions

Example 5. If f is differentiable at a, then it is continuous at a.

Proof. Recall that f is differentiable at a if f is defined in a neighborhood
of a and

lim
x→a

f(x)− f(a)

x− a
exists. If this limit exists, we call it f ′(a).

If f is differentiable at a, then

lim
x→a

f(x) = lim
x→a

f(a) + (x− a)
f(x)− f(a)

x− a

= f(a) +
(

lim
x→a

x− a
)(

lim
x→a

f(x)− f(a)

x− a

)
= f(a) + 0 · f ′(a)

= f(a).

Hence, by the definition of continuity, f is continuous at a. �
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