
MA 1: SESSION 9

1. Final Review

1.1. Fundamental Theorem of Calculus.

Question 1.1. Suppose that f is a function such that f ′′(x) = −3, and
f ′(1) = f(1) = 0. What is f?

Proof. By the Fundamental Theorem of Calculus, we know that (because f ′

is a primitive of f ′′)

f ′(x) = f ′(1) +

∫ x

1
f ′′(t) dt

= 0 +

∫ x

1
−3 dt

= −3x+ 3.

Applying the theorem again (since f is a primitive of f ′), we obtain

f(x) = f(1) +

∫ x

1
f ′(t) dt

= 0 +

∫ x

1
−3x+ 3 dt

= −3x2

2
+ 3x− 3

2

= −3

2
(x− 1)2.

�

Check: It’s good to check that your answer makes sense. Let’s try to
check this answer another way, by trying to graph f using the data given.

Since the second derivative of f is always negative, the first derivative of
f is always decreasing and also continuous (by the continuity of the integral
and realizing that (f ′)′ = f ′′). Since f ′(1) = 0, when then know that f ′(x)
is only equal to 0 at 1 (since it’s always decreasing), and so f has its only
critical point at 0.

Since f ′′ < 0, this point is a maximum and the graph is concave-down
everywhere. Then using the fact that f(1) = 0 tells us that the graph looks
like a downward-opening parabola from (1, 0), which agrees with our answer.
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1.2. ε-δ proofs and complex polar coördinates.

Question 1.2.

(1) Prove that f(x) = x3 − 1 is a continuous function on all of R.
(2) What are this function’s roots over C?
(3) What are this function’s global minima and maxima over the interval

[−1, 1]?

Proof. (1): To prove this, let’s follow the recipe laid out previously. Pick
a ∈ R. (Since we’ve done a number of examples where I just wrote the
proof and only one where I went through the process, let me go through the
thought process again.)

(1) First, let’s look at |f(x) − f(a)|, and try to create a simple bound
depending only on |x− a| and some constants.

|f(x)− f(a)| = |x3 − 1− a3 + 1| = |x3 − a3| = |x− a| · |x2 + xa+ a2|.

If x is within, say, 1 of a, we know that we can bound this quantity
|x2 + xa+ a2| as follows:

|x2 + xa+ a2| ≤ |(a+ 1)2 + a(a+ 1) + a2| ≤ 3(a+ 1)2,

which is a constant! Therefore, whenever x is within 1 of a, we have
the following simple bound:

|f(x)− f(a)| ≤ |x− a| · (3(a+ 1)2).

(2) Now that we have this nice constant bound, we want to pick δ such
that whenever |x− a| < δ, |f(x)− f(a)| < ε. To do this, we simply
want to pick δ such that
• δ < 1, so that x is always forced to be within 1 of a, and we

have our nice constant bound, and
• δ < ε

3(a+1)2
, because this means that

|f(x)− f(a)| ≤ |x− a| · (3(a+ 1)2) <
ε

3(a+ 1)2
· 3(a+ 1)2 = ε

So: let δ < min
(

1, ε
3(a+1)2

)
.

Then δ is smaller than both 1 and ε
3(a+1)2

, and so both of our

above statements hold! In particular, for any epsilon, this choice of
δ forces

|f(x)− f(a) < ε,
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which is exactly what we want to do in an ε− δ proof to show continuity.

(2): Finding this function’s roots over C is equivalent to finding all of the
values of z such that

1 = z3.

To do this: first, remember that we can write any nonzero point in C with
polar coördinates (r, θ) uniquely in the form reiθ, where r ∈ (0,∞) and
θ ∈ [0, 2π]. Then, we’re just looking for all of the values r, θ such that

1 = r3e3iθ.

Notice that if the above equation holds, then we have that

1 =
∣∣∣r3e3iθ∣∣∣ =

∣∣r3∣∣ · ∣∣∣e3iθ∣∣∣ .
However, if we use the formula eix = cos(x) + i sin(x) and the definition

|a+ bi| =
√
a2 + b2, we can see that∣∣∣e3iθ∣∣∣ = |cos(3θ) + i sin(3θ))

=

√
cos2(3θ) + sin2(3θ)

=
√

1

= 1.

Therefore, we in fact have that r3 = 1; i.e. r = 1! All we have to do now
is then solve for θ.

We do this in a similar way: if we have e3iθ = 1, by using eix = cos(x) +
i sin(x) again, we must have that

1 = cos(3θ) + i sin(3θ)

⇒ cos(3θ) = 1, and sin(3θ) = 0.

The three values θ = 0, 2π/3, 4π/3 are solutions to the above, and therefore

correspond to the three roots 1, e2iπ/3, e4iπ/3 of f(z) = z3 − 1; by the fun-
damental theorem of algebra, we know that there are only three roots, and
thus that we’ve found them all.

(3): Finally, we can find the minima and maxima of this (now real-valued,
again) function on [−1, 1] by simply taking its derivative. As f ′(x) = 3x2

has its only 0 at 0, we know (by the extremal value theorem) that the
only points we have to check for extrema are x = −1, 0, and 1. Because
f(−1) = −2, f(0) = −1, and f(1) = 0, we know that its global maxima on
this interval is 0 and its global minima is -2. �
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1.3. L’Hôpital’s rule / functions of the form (f(x))g(x) :

Question 1.3. Show that the limit

lim
x→0

(1− x)x − 1 + x2

x3

converges to 1/2.

Proof. We will have to use L’Hôpital’s rule multiple times to evaluate this
limit. First, before we can apply L’Hôpital’s rule, we must check that its
conditions apply. The functions contained in the numerator and denomina-
tor are all infinitely differentiable near 0, so this will never be a stumbling
block: furthermore, because the numerator and denominator are both con-
tinuous/defined at 0, we can evaluate their limits at 0 by just plugging in 0:
i.e.

lim
x→0

(1− x)x − 1 + x2 = (1− 0)0 − 1 + 02 = 1− 1 = 0, and

lim
x→0

x3 = 03 = 0.

So we’ve satisfied the conditions for L’Hôpital’s rule, and can apply it to
our limit:

lim
x→0

(1− x)x − 1 + x2

x3
=L′H lim

x→0

d
dx

(
(1− x)x − 1 + x2

)
d
dx (x3)

.

At this point, we recall how to differentiate functions of the form f(x)g(x),
where f(x) > 0, by using the identity

(f(x))g(x) = eln(f(x))·g(x)

⇒ d

dx
(f(x))g(x) =

d

dx
eln(f(x))·g(x)

= eln(f(x))·g(x) ·
(
g(x)

f(x)
· f ′(x) + g′(x) ln(f(x))

)
.

In particular, we can rewrite (1 − x)x as eln(1−x)·x, which will let us just
differentiate using the chain rule:

lim
x→0

(1− x)x − 1 + x2

x3
=L′H lim

x→0

d
dx

(
(1− x)x − 1 + x2

)
d
dx (x3)

= lim
x→0

d
dx

(
eln(1−x)·x − 1 + x2

)
d
dx (x3)

= lim
x→0

eln(1−x)·x ·
(

ln(1− x) + x
x−1

)
+ 2x

3x2

Again, both the numerator and denominator are continuous, and plugging
in 0 up top yields eln(1)·0 ·

(
ln(1) + 0

1

)
− 2 · 0 = 0, while on the bottom we
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also get 0. Therefore, we can apply L’Hôpital’s rule again to get that our
limit is just

lim
x→0

d
dx

(
eln(1−x)·x ·

(
ln(1− x) + x

x−1

)
+ 2x

)
d
dx (3x2)

= lim
x→0

eln(1−x)·x ·
(

ln(1− x) + x
x−1

)2
+ eln(1−x)·x ·

(
− 1

1−x −
1

(x−1)2

)
+ 2

6x

Again, the top and bottom are continuous near 0, and at 0 the top is

eln(1−0)·0 ·
(

ln(1− 0) +
0

0− 1

)2

+ eln(1−0)·0 ·
(
− 1

1− 0
− 1

(0− 1)2

)
+ 2 = 0− 2 + 2 = 0,

while the bottom is also 0. So, we can apply L’Hôpital again! This tells us
that our limit is in fact

lim
x→0

d
dx

(
eln(1−x)·x ·

(
ln(1− x) + x

x−1

)2
+ eln(1−x)·x ·

(
− 1

1−x −
1

(x−1)2

)
+ 2

)
d
dx (6x)

= lim
x→0

eln(1−x)·x ·
(

ln(1− x) + x
x−1

)3
+3eln(1−x)·x ·

(
ln(1− x) + x

x−1

)
·
(
− 1

1−x −
1

(x−1)2

)
+eln(1−x)·x ·

(
−1

(x−1)2 + 2
(x−1)3

)
6

.

Again, the top and bottom are made out of things that are continuous at 0.
Plugging in 0 to the top this time gives us −3, while the bottom gives us 6:
therefore, the limit is just

−3

6
= −1

2
.

So we’re done! �

1.4. Taylor series:

Question 1.4. Approximate the integral∫ 2

1

sin(x)

x
dx.

Proof. Recall that the Taylor series for sin(x):

T (sin(x)) =
∞∑
k=0

(−1)n
x2n+1

(2n+ 1)!
.

Using this, we can write

sin(x)

x
=
Tn(sin(x))

x
+
Rn(sin(x))

x
,
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and therefore write∫ 2

1

sin(x)

x
dx =

∫ 2

1

Tn(sin(x))

x
dx+

∫ 2

1

Rn(sin(x))

x
dx.

We do this for the same reasons as in our estimation of the Gaussian integral∫
e−x

2
! Specifically, notice that the Tn(sin(x))

x part is just a polynomial:

Tn(sin(x))

x
=
x− x3

3! + x5

5! − . . .
x

= 1− x2

3!
+
x4

5!
− . . .

which should be easy to integrate.

This leaves the Rn(sin(x))
x part, which we should be able to bound using

Taylor’s theorem. Specifically, we have

Rn(sin(x)) =

∫ x

0

dn

dtn (sin(t))

n!
· (x− t)ndt

⇒ |Rn(sin(x))| ≤
∫ x

0

∣∣ dn
dtn (sin(t))

∣∣
n!

· |(x− t)n| dt

≤
∫ x

0

1

n!
· xndt

=

(
xn

n!

)
· t
∣∣∣x
0

=
xn+1

n!
.

Therefore, we can bound the integral
∫ 2
1
Rn(sin(x))

x as follows:

∣∣∣∣∫ 2

1

Rn(sin(x))

x
dx

∣∣∣∣ ≤ ∫ 2

0

xn

n!
dx =

xn+1

(n+ 1)!

∣∣∣∣∣
2

1

=
2n+1 − 1

(n+ 1)!
.

This quantity is 7
80 < .1 at n = 6. Therefore, we’ve proven that

∫ 2

1

sin(x)

x
dx =

∫ 2

1

T6(sin(x))

x
dx,

up to ±.1.

So: to find this integral, it suffices to integrate T6(sin(x))
x . This is trivial:

6



∫ 2

1

T6(sin(x))

x
dx =

∫ 2

1

x− x3

3! + x5

5!

x
dx

=

∫ 2

1
1− x2

3!
+
x4

5!
dx

=

(
x− x3

3 · 3!
+

x5

5 · 5!

) ∣∣∣2
1

=
1193

1800
≈ .66

So our integral is about .66± .1.
�

1.5. Integration methods:

Question 1.5. Calculate the following two integrals:∫ 1

0
ln(1 + x2)dx,

∫ 3

2

1√
x+ 1 +

√
x− 1

dx.

Proof. We begin by studying
∫ 1
0 ln(1+x2)dx. Because no substitution looks

very promising (as the 1 + x2 term messes things up,) we are motivated to
try integration by parts. In particular, we can remember the trick we used
when integrating ln(x), and set

u = ln(1 + x2) dv = dx
du = 2x

1+x2
v = x,

which gives us∫ 1

0
ln(1 + x2)dx = ln(1 + x2) · x

∣∣∣1
0
−
∫ 1

0

2x2

1 + x2
dx

A bit of algebra allows us to notice that

ln(1 + x2) · x
∣∣∣1
0
− 2

∫ 1

0

x2

1 + x2
dx = ln(1 + x2) · x

∣∣∣1
0
− 2

(∫ 1

0
1− 1

1 + x2
dx

)
= ln(1 + x2) · x

∣∣∣1
0
− 2x

∣∣∣1
0

+ 2

∫ 1

0

1

1 + x2
dx.
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Now, we remember our inverse trig identities, and specifically remember
that

∫
1

1+x2
dx = arctan(x); combining, we have∫ 1

0
ln(1 + x2)dx = ln(1 + x2) · x

∣∣∣1
0
− 2x

∣∣∣1
0

+ 2 arctan(x)
∣∣∣1
0

= ln(2)− 2 +
π

2
.

We now look at
∫ 3
2

1√
x+1+

√
x−1dx. Before we can do anything, we have

to do some algebra to clean up this function. Specifically, to simplify this
expression, we multiply top and bottom by

√
x+ 1 −

√
x− 1, a common

algebraic technique used on square-root-involving expressions to clean things
up:∫ 3

2

1√
x+ 1 +

√
x− 1

dx =

∫ 3

2

1√
x+ 1 +

√
x− 1

·
√
x+ 1−

√
x− 1√

x+ 1−
√
x− 1

dx

=

∫ 3

2

√
x+ 1−

√
x− 1

(
√
x+ 1)2 − (

√
x− 1)2

dx

=

∫ 3

2

√
x+ 1−

√
x− 1

x+ 1− x+ 1
dx

=
1

2

∫ 3

2

√
x+ 1−

√
x− 1dx

=
1

2

∫ 3

2

√
x+ 1dx− 1

2

∫ 3

2

√
x− 1dx.

We now perform a pair of translation-substitutions, setting u = x+1 in the
first integral and u = x-1 in the second integral:

=
1

2

∫ 4

3

√
udu− 1

2

∫ 2

1

√
udu.

=
1

2

(
2u3/2

3

)∣∣∣4
3
− 1

2

(
2u3/2

3

)∣∣∣2
1

=

√
64−

√
27−

√
8 + 1

3
.

�
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