
MA 1B RECITATION 01/08/15

1. Introduction

Hi, I’m Brian, and I’ll be your TA this quarter. Here’s some basic info

• My email: bhwang@caltech
• My office: 158 Sloan
• My office hours: 4pm Sunday afternoon, or by appointment.
• Section website: http://hwang.caltech.edu/ma1b/

Recitation notes will be posted on the section website within a few days of the
recitation itself.

Late policy : You are allowed a maximum of one extension on the homework (for
at most a week after the assignment it due). If you need to use it, just send me an
email before the due date. Late assignments beyond this will require a note from
the Dean or the Health Center—-but don’t be afraid to ask for these if you really
need it.

1.1. The Big Picture. The practical section usually begins by doing tons of ma-
trix computations. The analytic section starts off with the abstract definition of a
vector spaces. How are these two objects related?

The primary reason is that matrices are explicit realizations of maps between
vector spaces. For instance, a map between two 2-dimensional vector spaces can
be represented by a 2-by-2 matrix.

The main objects of study in linear algebra are linear transformations, that is,
linear maps between vector spaces.

We are still studying the same object, but we are taking two different paths.
The practical section takes a “bottom-up” approach, getting comfortable with the
formalism of matrices before learning what they are supposed to represent, then
learning the real definitions to understand what they were really doing when they
were manipulating matrices. Here, in the analytic section, we take a “top-down”
approach, where we try and tell you the whole story up-front, then proceeding
systematically, building abstraction upon abstraction until we can prove nontrivial
results in just a couple of lines. This tends to require a little more mathematical
maturity and self-initiative, but it allows us to proceed through more material and
to have a better understanding of how to approach a problem from the perspective
of a mathematician, which is why this class remains in the Caltech Core.

1.2. Philosophy of Linear Algebra. What distinguishes linear algebra from
other math courses that you might have taken before is that it comes off as “aus-
tere.” Especially in the beginning, you get definition after definition in rapid suc-
cession, and if you have no idea what it’s for or why it is useful, it can seem very
dry.

The power of algebra—and linear algebra in particular—is that by carefully
constructing the tower of abstractions, you can prove highly nontrivial things in a
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very concise way. Therefore, memorizing the definitions perfectly is crucial
to understanding the material.

Unlike calculus courses, where you could essentially get away with a vague idea
of the definitions and facility with the techniques, this will not suffice for a proof-
based linear algebra course, like this one. As an analogy, to know the definition
of “derivative” of a function f at x perfectly is not only to know it as the vague

notion of “rate of change” or “slope of the tangent,” but as limh→0
f(x+h)−f(x)

h . I
know this sounds nitpicky, but it’s hard to overemphasize this point, and failure of
this is almost universally the reason students do not do well in this course.

The best way to memorize the definitions is to grasp the concepts at an
intuitive level. Aside from practicing these techniques in homework assignments,
a good way to practice this is to ask yourself the following two questions whenever
you see a definition:

(1) What phenomenon is this definition trying to model?
(2) Why is this particular definition the best way to model it?

The abstractions in linear algebra have been codified and solidified over centuries
of use and the definitions that we teach you in class are the ones that have been
tested over time for maximum power and generality. However, since we are so far
removed from the motivating phenomena, it is up to us to fill in the details, to at
take a couple of seconds to think about the where this object came from and where
we might be going by studying it.

2. What is a vector space supposed to model?

Well, as you might have guessed, they’re supposed to model vectors, the familiar
vectors you remember from before college (or your physics classes).

What is a vector? It a quantity with a direction and magnitude. The concept of
vector space is trying to generalize that of a set of vectors in some Euclidean space,
like R2.

The intuition still holds to some extent for Rn, but it does not work so well for
arbitrary vector spaces, as we’ll see with some examples that don’t look like Rn.
With this, I want to emphasize that it’s probably best to just view elements of a
vector space as objects satisfying the vector space axioms, although you can use
the “arrow” intuition as a first approximation.

Example 1. The set of continuous functions f : R→ R form a real vector space,
with vector addition and scalar multiplication being just the usual addition of
functions and multiplication by real constant.

For those of you who are familiar with most the material today and want to
think of something challenging, try and answer the following question. What is a
basis for this vector space over R? The answer is not important for this class, but
it illustrates one reason why we want to work with vector space axioms instead of
“intuitively” using the “vectors as arrows.”

Example 2. Here’s a weird example of a vector space. Consider the positive real
numbers R+. This is a vector space over R. Here 1 is the “zero vector,” “scalar
multiplication” is numerical exponentiation (c ·v = vc), and “addition” is numerical
multiplication (v + w = vw). What is “−v”? It’s the real number 1/v.

It’s intuitively “smaller” than the real numbers as a set. What’s a basis for this?
(Think about properties you know about the real numbers.)
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What about some non-examples of vector spaces? We’ll see some in the next
section, as we talk about subspaces.

3. Subspaces

Recall that a subspace is a subset S of a vector space V that is closed under
addition and scalar multiplication (that is, multiplication by the real numbers for
real vector spaces).

Let’s start with some examples.
Examples of subspaces in R2:

• The origin itself.
• Lines through the origin.
• R2 itself.

Indeed, this is a complete classification of subspaces of R2. In particular, note that
subspaces must always contain the zero element 0, since we can always multiply by
0. Another reason that subspaces must contain a 0 is because subspaces are vector
spaces themselves, and so must have some 0.

Remark 1. Note that the empty set ∅ is not a subspace of a vector space, because
it does not contain an additive identity element 0. It also cannot be a vector space,
for the same reason.

Non-examples of subspaces in R2:

• Lines not passing through the origin.
• Two parallel lines (even if one passes through the origin).
• The unit circle or unit-square.
• The closed right half-plane (i.e. points such that x ≥ 0).
• The union of the (closed) first and third quadrants.

In particular, note that the last example is closed under scalar multiplication but
not addition. Thus, we see that subspaces in R2 have a distinct geometric “shape.”
We see this phenomenon also holds in R3.

Examples of subspaces in R3:

• The origin itself.
• Lines through the origin.
• Planes through the origin.
• R3 itself.

Much like in the case of R2, it turns out that this is a complete classification of
subspaces in R3.

Non-examples of subspaces in R3:

• Any ball, even if it contains the origin or is symmetric about the origin.
• Cone centered at the origin
• Double cone centered at the origin (but note that this is closed under scalar

multiplication).

What about R4? Take the fourth dimension as time. Think about it. Is R3

a subspace of R4? What about a plane? (You have to think about time.) What
about a plane, for a duration of 5 sections?

How about subspaces of R5? One way to model the fifth dimension is to use a
coloring.
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As you can see, once we got beyond things we could easily visualize, it becomes
slightly harder to recognize subspaces “on sight” and that is the reason one of the
reasons why we use this abstract notion of vector space. With this definition, a
vector is merely an object of a vector space, not a tuple of elements. It turns out
that they coincide in the case of Rn, since this was a motivating example, but
stubbornly sticking to such a notion will get you in trouble later on.

One nice thing about linear algebra is that once you master the definitions,
proving something about vector spaces that is true for n dimensions will be as easy
as proving it for 2 or 3 dimensions.

4. Polynomials

You’ve certainly seen these before, but let’s review things from the perspective
of linear algebra.

Let F = R (the real numbers) or F = C (the complex numbers). A polynomial
in x over F is the (formal) sum

f(x) = a0 + a1x + · · ·+ amxm =

m∑
i=0

aix
i

for some nonnegative integer m and ai ∈ F . We say that it’s a “formal” sum,
because we are not concerned about issues of convergence, like the problem that
we might get infinity if we plug in a specific value for x into f(x).

Remark 1. Note that this is just a strange way to write a sequence a0, a1, a2, . . .
that is “eventually zero”, that is, where there exists a number N such that an = 0
for all n ≥ N . This is sort of the “raw data” of the polynomial, and the only thing
that we are concerned about, when viewed from an algebraic perspective.

The ai is called the ith coefficient of f. We usually insist that am 6= 0, in
which case, we say that the degree of f is m, which we denote by deg(f) = m.
(Otherwise the degree is simply the number “i” of the highest nonzero coefficient.)

Two polynomials are equivalent if and only if all of their coefficients are the
same for every i. (This is obvious, but worth stating because we will deal with
other notions of equivalence later on in the course, and these will not necessary be
equality.)

Write F [x] for the set of all polynomials (of all degrees). This set admits two
binary operations: + and ·, called polynomial addition and polynomial mul-
tiplication. They are just the addition and multiplication of polynomials that you
have been doing since your first algebra class. These operations are both associative
and commutative; they also satisfy distributive properties.

Also, note that F [x] admits a scalar multiplication, that is, if c ∈ F and
f ∈ F [x], then

c ·
∑
i

aixi =
∑
i

(cai)x
i ∈ F [x].

In particular, note that this distributes with addition.
Since F [x] admits (polynomial) addition and scalar multiplication that satisfy

certain nice properties, F [x] is a vector space. You can verify that F [x] satisfies
the axioms of a vector space.

Remark 2. Note that we didn’t even need polynomial multiplication to check that
F [x] is a vector space. It comes along as a bonus! But it seems like a waste to
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lose such a nice operation entirely. Indeed, if you study algebra beyond this course
(e.g. if you declare a math or physics major), you will see that F [x] is also a key
example of algebraic objects with even more structure, like rings and modules and
algebras. But you need not concern yourself about this stuff for this class (unless
you want to! in which case you can certainly ask me about them).

Remark 3. Note that F [x] is an infinite-dimensional vector space over F . You don’t
need to know this information yet, but a possible basis of F [x] over F is given by
1, x, x2, x3, . . ..

Which of these are subspaces of F [x]?
Subsets consists of f ∈ F [x] such that

• f(0) = 0? Yes.
• f ′(0) = 0? Yes.
• f ′′(0) = 0? Yes.
• f(0) + f ′(0) = 0? Yes.

Let’s prove one of these results, just to review how to go about doing a proof
and to establish some standard of what we expect on your homeworks.

Proposition 4. The set S of polynomials f ∈ F [x] such that f(0) + f ′(0) = 0 is a
subspace of F [x].

Proof. If f(x) =
∑

aix
i ∈ F [x], then f(0) = a0 and f ′(0) = a1, so f ∈ S if and

only if a0 + a1 = 0. Note that S is nonempty, since the zero polynomial f(x) = 0
satisfies f(0) + f ′(0) = 0. To show that S is a subspace, we need to show that S is
closed under addition and scalar multiplication.

Let f =
∑n

i=0 aix
i, g =

∑m
i=0 bix

i ∈ S. To show that S is closed under addition
and scalar multiplication, it is enough to show that cf(x) +dg(x) =

∑
eix

i ∈ S for
any c, d ∈ F . We have

e0 + e1 = ca0 + da0 + ca1 + da1 = c(a0 + a1) + d(b0 + b1) = c · 0 + d · 0 = 0,

so S is a subspace, as desired. �


