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1. Warm-up Question

Consider the vector space of 3-by-3 matrices and consider the matrices in it that
are “magic squares,” where the rows, columns, and diagonals all add up to the same
number, for example 6 1 8

7 5 3
2 9 4

 .

We can get other easy examples of magic squares by rotating the above matrix, or
by considering things like 1 1 1

1 1 1
1 1 1


Do magic squares form a subspace? It turns out they do! You can easily check

that the sum of magic squares is another magic square, and that scaling a magic
square by some constant gives you another magic square. Another easy result is
that the magic squares where all the rows, columns, diagonals sum to m form a
subspace if and only if m = 0.

The dimension of 1-by-1 matrices is obviously 1, and the dimension of 2-by-2
matrices is 1 as well, with a basis given by[

1 1
1 1

]
.

Now, what is the dimension of the space of 3× 3 magic squares?
Bonus: What is the dimension of the space of n× n magic squares for n > 3?

2. Quick Recap

The first couple weeks of learning linear algebra just consists of definition after
definition. Since definitions are the core of the course, it doesn’t hurt to see them
until you have them down cold. Let’s quickly recall the basic facts and definitions
about dimension and vector spaces.

We say a vector w is a linear combination of vectors v1, . . . , vn if there exists
scalars a1, . . . , an such that

w = a1v1 + · · ·+ anvn.

The span of vectors v1, . . . , vn, denoted span(v1, . . . , vn) is the set of all vectors
which are linear combinations of v1, . . . , vn, that is,

span(v1, . . . , vn) = L({v1, . . . , vn}) = {a1v1 + · · · anvn | ai ∈ R}.

Equivalently, the span is the smallest subspace containing v1, . . . , vn.

Date: January 14, 2015.

1



2 MA 1B RECITATION 01/14/15

Given a vector space V , if span(v1, . . . , vn) = V , we say that the vectors v1, . . . , vn
span V or generate V or that {v1, . . . , vn} is a spanning or generating set for
V .

We say that the vectors v1, . . . , vn are linearly independent if

a1v1 + · · · anvn = 0

implies that a1 = · · · = an = 0. (Otherwise, we say that v1, . . . , vn are linearly
dependent.)

Proposition 1. The vectors v1, . . . , vn are linearly independent if and only if every
vector w ∈ span(v1, . . . , vn) can be written uniquely as

w = a1v1 + · · ·+ anvn.

A linearly independent spanning set of vectors for V is a basis for V .
Here are some basic facts about bases, some of which we went over in lecture,

some of which you will prove on the homework.

• Every vector space has a basis.
• Any generating set for V contains a basis.
• Any linearly independent set of vectors can be extended to a basis.
• Any two bases of V contain the same number of elements.

3. Dimension

Since any two bases of V contain the same number of elements, we say that a
vector space V is of dimension n if its basis consists of n elements.

Here are a couple of obvious consequences of the definition.

• The dimension of Rn is n.
• The dimension of a vector space is a nonnegative integer, and there exists

a vector space of dimension n for every nonnegative integer n.
• The dimension of a proper subspace of a finite-dimensional vector space is

less than the dimension of the whole space.
• If A is a set of m vectors in V and m < dim(V ), then A does not contain a

basis.
• If A is a set of m vectors in V , and m > dim(V ), then A is linearly depen-

dent.

Dimension in linear algebra is a pretty “coarse” invariant, but it is pretty much
the only invariant of vector spaces that we care about! This is because any real (or
complex) vector space of dimension n is isomorphic (as a vector space) to Rn, that
is, they are essentially the same in the eyes of linear algebra. This is a no-brainer
for something like Rn, but, of course, vector spaces can look very different upon
first glance!

Here are a couple of interesting mathematical objects that are “the same” as
vector spaces. (The precise term for this is that the vector spaces are isomorphic,
but we will touch on that slightly later in the course.)

Example 1. Consider the set R4 and M2(R) the vector space of 2-by-2 real ma-
trices. They are both 4-dimensional over R

Example 2. Consider the vector spaces of R2 and C, considered as a real vector
space (that is, forget that C has a magical multiplication). Then both R2 and C
have dimension 2 over R and so are isomorphic as vector spaces.
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Example 3. If V is a real vector space of dimension n, then L(V,R), the set
of linear maps from V to R is also of dimension n, so the vector space and the
real-valued linear maps are “the same” as vector spaces.

4. Answer to the magic squares question

This is a heuristic solution and is missing many details, but you can turn this
reasoning into a rigorous proof with some work.

In general a magic square can be considered as an n2-dimensional vector that
satisfies n+n+2−1−1 independent constraints: the rows, columns, and diagonals
have the same sum, but the sum of the row equations equals the sum of the column
equations, so one of those is redundant.

Thus, it turns out the magic squares where each sum to zero have dimension
n2 − 2n− 1 for n ≥ 3.

To a basis for the full set of magic squares (where the sum can be anything), we
can take the basis above and adding the element that consists of 1’s in all places.

Thus, if n ≥ 3, the dimension is n2 − 2n.
For instance, every 3-by-3 magic square can be written as a + b a + c− b a− c

a− b− c a a + b + c
a + c a + b− c a− b

 .

5. Big Picture: A Classification of Linear Transformations, Affine
Transformations

What does a linear transformation “look like”?
It turns out that there is a one-to-one correspondence between linear transfor-

mations T : Rn → Rm and m × n matrices. This is one of the major conceptual
milestones of this course.

For example, for linear maps R2 → R2, all of them are of the form

T : R2 → R2

(x, y) 7→ (ax + by, cx + dy)

which corresponds to the matrix

[
a b
c d

]
. Thus, these linear maps have a similar

shape, namely, they correspond to a scaling or “shearing” operation that you can
visualize by say, fixing a unit square with lower-left corner at (0, 0) and seeing what
happens to the square when you let T act on R2.

However, this is not the complete truth. I’ve implicitly made an assumption
about choices of bases. Namely, I’ve assumed that both copies of R2 have the same
basepoint (the origin 0) and the same bases x and y, corresponding to the standard
basis e1 = (1, 0) and e2 = (0, 1).

We could also suppose that the second copy of R2 has a different basepoint, say,
(3, 1) instead of the (0, 0), and choose bases x′ and y′ relative to the basepoint, so
x′ is given by the vector (3, 1)→ (4, 1) and y′ is given by the vector (3, 1)→ (3, 2).

To distinguish this slightly modified copy, let’s call this R̃2. This is still a two-
dimensional vector space and so is isomorphic to R2. Since linear maps must map
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the origin to origin, the linear maps R2 → R2 are of the form

T : R2 → R̃2

(x, y) 7→ (ax′ + by′ + 3, cx′ + dy′ + 1)

We see that now we have translation by (3, 1) as a valid map from R2 to a copy
of R2. Thus, if we fix the same basepoint and bases, a translation is not a linear
transformation R2 → R2, but if we allow ourselves to change the basepoint, we
allow for translations.

Now, when we usually talk about maps R2 → R2, we’ll assume they have the
same basepoints for simplicity, but maybe you’re wondering, if we give ourselves
the freedom to change basepoints, does that preserve anything about, say, lines or
shapes in the plane? Or is it completely wild?

It turns out that it does in fact preserve a lot of information. If we allow ourselves
to change basepoints, we get a class of maps called affine transformations that give
us all the ways we can “transform” R2 that preserves straight lines and ratios
of distances between points lying on a straight line. Such maps don’t necessarily
preserve angles or lengths, but many things do hold, like points lying on lines will
still remain on the line after transformation, midpoints of line segments will remain
midpoints of that line segment after transformation, and parallel lines will remain
parallel after transformation.

In the language of linear algebra, we can describe affine transformations very
concisely: they are merely linear transformations followed by a translation. Do
affine transformations form a vector space? It turns out they do! What is the
dimension of said vector space? Note that the linear transformations are a proper
subspace of the vector space of affine transformations.

But why do we care about these weird invariant properties? It turns out that they
can have a lot of scientific meaning. For instance, results like Noether’s theorem in
physics says that invariants are a sign of symmetry, and can point to the fact that
seemingly complicated phenomena in the world can admit a surprisingly simple
description if you look at the problem the right way.

We will stick to studying linear transformation in this Ma 1b, but you will surely
encounter affine transformations in later courses.

6. Analyzing Linear Transformations

Recall that we have the rank-nullity theorem, one of the few formulas in this
class: given a linear transformation T : V →W , we have

dimV = dim Ker(T ) + dim Im(T ) = “nullity” + “rank”,

where Ker(T ) = {v ∈ V | Tv = 0} and Im(T ) = {w ∈ W | Tv = w for some v ∈
V }. In matrix form, this means that rank plus nullity equals the number of columns.

Example 1. Let’s consider the “crushing” map T : R2 → R2 given by

(x, y) 7→ (x, 0).

To begin, let’s explore how this transforms some shapes in R2. For instance, it
turns a unit square into a line. It turns a mountain shape into a line.
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What does it look like in matrix form? Let’s consider it with the standard bases
e1 = (1, 0)T and e2 = (0, 1)T on each side. It is[

1 0
0 0

]
and we can check, since (x, y) corresponds to xe1 + ye2, we have[

1 0
0 0

] [
x
y

]
=

[
x
0

]
.

Great!
What’s the rank and nullity? The elements of R2 that map to 0 under T are all

of the form (0, a)T where a ∈ R, so it is spanned, for instance, by (0, 1)T .
Note that the image of T consists of elements of the form (a, 0) with a ∈ R so is

spanned, for instance, by (1, 0). Thus, we see that the rank-nullity theorem holds
here:

2 = 1 + 1.

As you can see, the rank and nullity are somewhat intuitive. Roughly speaking,
the nullity represents the dimensions that are “lost” in the transformation, and the
rank represents those that are “preserved,” and the sum of the dimensions that we
“lose” and “preserve” must be just what we started with.


