
MA 1B RECITATION 02/05/13

1. Announcements

The midterm is now available. If you don’t have a copy for some reason, pick
one up from the Math Office on the second floor Sloan. The midterm is due Sunday
night at the same time as the homework.

The midterm review will take place Friday at 8pm in Sloan 151.

2. Interlude on Determinants

You don’t need to be completely familiar with determinants for your midterm,
and we’ll get more in-depth into determinants in the following week, but it may be
useful as a nice check for problems you may encounter.

Recall that the determinants are associated to square matrices and are given in
the 2× 2 and 3× 3 cases by

det

[
a b
c d

]
= ad− bc

det

a b c
d e f
g h i

 = aei + bfg + cdh− gec− hfa− idb.

However, the analogous procedure does not work for 4 × 4 matrices and higher.
We’ll have to use other methods to calculate the determinant in this case, which
we’ll see soon.

An important property about determinants is that they are multiplicative, that
is,

det(AB) = det(A) det(B).

Probably the most important property about determinants it that they give a
condition in our grand theorem.

Proposition 1. For an n× n matrix A, the following are equivalent:

(a) A is invertible
(b) A has full rank (equivalently, nullspace {0})
(c) det(A) 6= 0.

In low-dimensional cases, checking the determinant is usually the fastest way to
check that a map is invertible or has full rank.

It is also useful for doing checks at steps in your work. For instance, all base
change matrices are invertible, so they must have nonzero determinant. If you stop
and calculate the determinant of such a matrix and you somehow get a zero deter-
minant, you have done something wrong before and need to check your calculations.

Date: February 5, 2015.

1



2 MA 1B RECITATION 02/05/13

3. Midterm review

Example 1. Let T : R2 → R2 be a linear transformation be represented in the
standard basis X = {e1, e2} = {[1, 0]t, [0, 1]t} = {x, y} by

mX(T ) = A =

[
5 −3
2 −2

]
.

What is the matrix representation of T with respect to the basis Y = {v1 =
[3, 1]t, v2 = [1, 2]t}.

Solution. The change of basis matrix here is given by

B =

[
3 1
1 2

]
and so

B−1 =
1

5

[
2 −1
−1 3

]
.

Thus, we have

mY (T ) = B−1mX(T )B

=
1

5

[
2 −1
−1 3

] [
5 −3
2 −2

] [
3 1
1 2

]
=

1

5

[
2 −1
−1 3

] [
12 −1
4 −2

]
=

1

5

[
20 0
0 −5

]
=

[
4 0
0 −1

]
.

Thus, the transformation is determined by

Av1 = 4v1 + 0v2 = 4v1 (first column of B)

Av2 = 0v1 − 1v2 = −v2 (second column of B).

Let’s check this:

Av1 =

[
5 −3
2 −2

] [
3
1

]
=

[
12
4

]
= 4

[
3
1

]
= 4v1

Av2 =

[
5 −3
2 −2

] [
1
2

]
=

[
−1
−2

]
= −

[
1
2

]
= −v2.

�

Example 2. Consider the vector space P = P≤2 of polynomials of degree ≤ 2.
Consider the following two bases of P :

B = {1, x, x2}
E = {1, 1 + x, 1 + x + x2}.

Write the differentiation operator T : P → P with respect to the bases B and E,
respectively.
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Solution. We have

mB(T ) =

0 1 0
0 0 2
0 0 0

 .

Write E = {e1, e2, e3}, where

e1 = 1

e2 = 1 + x

e3 = 1 + x + x2

so the base change matrix from E to B is given by

C =

1 1 1
0 1 1
0 0 1

 .

A short calculation tells us that the inverse is

C−1 =

1 −1 0
0 1 −1
0 0 1

 .

We then calculate

mE(T ) = C−1mB(T )C

=

1 −1 0
0 1 −1
0 0 1

0 1 0
0 0 2
0 0 0

1 1 1
0 1 1
0 0 1


=

0 1 −2
0 0 2
0 0 0

1 1 1
0 1 1
0 0 1


=

0 1 −1
0 0 2
0 0 0

 .

Alternatively, one could have calculated the matrix representation of T with
respect to E directly and obtained the same matrix. If you have time, it is good
to try and see whether you get the same matrix using both methods, so that you
catch yourself from making any arithmetic mistakes. �

Example 3. Find a basis for the vector space V spanned by w1 = (1, 1, 0), w2 =
(0, 1, 1), w3 = (2, 3, 1) and w4 = (1, 1, 1).

Solution. Since we have four vectors in R3 this is obviously a linear dependent set.
Can we find a basis within it? (Remember the results we know about bases and
spanning sets.) There are a couple of ways to solve this problem, but here’s one
way to approach it.

To pare down this spanning set, we need to find a relation

r1w1 + r2w2 + r3w3 + r4w4 = 0
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where ri ∈ R are not all zero. Equivalently, we have1 0 2 1
1 1 3 1
0 1 1 1



r1
r2
r3
r4

 =

0
0
0

 .

So to find a nontrivial relation, we need to solve this system of equations. We
proceed by applying row reduction and try to get things in reduced row echelon
form (1’s in each column with zeros above):1 0 2 1

1 1 3 1
0 1 1 1

 ∼
1 0 2 1

0 1 1 0
0 1 1 1

 ∼
1 0 2 1

0 1 1 0
0 0 0 1

 ∼
1 0 2 0

0 1 1 0
0 0 0 1

 .

Therefore, we have 
r1 + 2r3 = 0

r2 + r3 = 0

r4 = 0

⇔


r1 = −2r3

r2 = −r3
r4 = 0

which has a general solution

(r1, r2, r3, r4) = (−2t,−t, t, 0), t ∈ R.

with a particular solution given by (2, 1,−1, 0). Thus, we have the nontrivial rela-
tion

2w1 + w2 − w3 = 0.

Thus, any of the vectors w1, w2, w3 can be dropped. For instance, V = span(w1, w2, w4).
But is w1, w2, w4 a basis for V ? Let’s check whether they these vectors are

linearly independent:

det

1 0 1
1 1 1
0 1 1

 = 1 + 0 + 1− 0− 1− 0 = 1 6= 0

so they are indeed linearly independent. Since {w1, w2, w4} is a linearly independent
spanning set it is a basis for V and we conclude that V ∼= R3. �

Example 4. Let T : R2 → R3 be a linear transformation whose matrix represen-
tation (with respect to the standard basis) is given by

A =

1 3
2 6
3 9

 .

We want to

(a) Find a basis for N(T ).
(b) Is T one-to-one?
(c) Find a basis for the range of T .
(d) Is T onto?

Solution. We want solutions v such that Av = 0. By row-reduction, we get1 3
0 0
0 0

 .
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Hence, a basis for N(T ) is {[3,−1]t}. Since this is not zero, T is not one-to-one.
Now, let e1, e2 be the standard basis for R2. Then span(T (e1), T (e2)) = range(T ).

These are just the columns of A. A basis for the space spanned the columns of A
are given by {[1, 2, 3]t}. The dimension of the range of T is 1 and the dimension of
R3 is 3, so T is not onto. �

Example 5. Let V be finite dimensional. Prove that any linear map on a subspace
of V can be extended to a linear map on V . In other words, show taht if U is a
subspace of V and S ∈ L(U,W ), then there exists a T ∈ L(V,W ) such that Tu = Su
for all u ∈ U .

Proof. Let U be a subspace of V and S ∈ L(U,W ). Let (u1, . . . , um) be a basis of
U . Then (u1, . . . , um) is a linearly independent list of vectors in V , and so can be
extended to a basis (u1, . . . , um, v1, . . . , vn) on V . Define T ∈ L(V,W ) by

T (a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn) = a1SU1 + · · ·+ amSum.

Then Tu = Su for all u ∈ U . �


