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1. Determinants

1.1. What do determinants represent? When introduced at this stage of the
course, determinants seem like mysterious objects—just a formula that you apply
blindly to matrices to get some number out of them. However, there are some
alternative ways to think about them; personally, I like to think of determinants as
an oriented volume. Indeed, this is primarily how determinants arise in calculus,
as you will see in Math 1c.

Here’s how you view them from this perspective: think of the columns of the
matrix as vectors at the origin forming the edges of a (probably skewed) parallo-
gram/parallelepiped/parallelotope. The determinant gives the volume of that box,
multiplied by a ±1 depending on the “orientation” of the vectors. Let’s see this in
the first nontrivial case.

Example 1. The determinant of a 2× 2 matrix is given by

det

[
a b
c d

]
= ad− bc.

How should we think about this?
Remember that this matrix represents a linear mapping; in particular, one that

takes the standard basis vectors and maps them to the columns of A. Alternatively,
since det(A) = det(AT ), we could also use a mapping that takes the standard basis
vectors and maps them to the rows of A. Just for kicks, let’s try the mapping to
the rows.

The images of the basis vectors forms a parallelogram that represents the image
of the unit square under the mapping. The parallelogram defined by the rows of
the above matrix is one with vertices at (0, 0), (a, b), (a+ c, b+ d) and (c, d).

The absolute value of ad− bc is the area of the parallelogram and represents the
scale factor by which areas are transformed by A.

The absolute value of the determinant together with the sign becomes the ori-
ented area of the parallelogram. The oriented area is the usual area, except that
it is negative when the angle from the first to the second vector defining the paral-
lelogram goes clockwise instead of counterclockwise. (Namely, opposite the direct
you would get for the identity matrix.) Like most things in math, it’s more natural
to go counterclockwise than clockwise.

An analogous picture works in higher dimensions.

1.2. Important Properties of Determinants. Let A and B be n × n square
matrices.

• det(AB) = det(A) det(B)
• det(AT ) = det(A)
• det(In) = 1
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• Determinants remain invariant under basis change.
• Exchanging two rows or two columns multiplies the determinant by −1.
• If A is invertible, then det(A−1) = 1

det(A) .

• det(cA) = cn det(A). Note that you need to take it to the nth power! This
is a common error on exams, so please remember this. An easy way to
remember is to remember the multiplicative formula and realize that you
are actually multiplying by cIn.

• If the columns of A form a linearly dependent set, then det(A) = 0.
• Since det(AT ) = det(A), if the rows of A form a linearly dependent set,

then det(A) = 0.
• If A is an upper- or lower-triangular matrix, then its determinant is the

product of the diagonal entries. (Note that diagonal matrices themselves
are both upper- and lower-triangular.)

• det(A) =
∏n

i=1 λi, where λi are the eigenvalues of A.

The last statement is what’s “really” going on when you’re calculating the deter-
minant, and is what we’re ultimately building up to with the theory of eigenvectors
and eigenvalues and reach its full conclusion in this course with the Grand Theorem
of Linear Algebra and the Spectral Theorem.

Also, it’s worth noting that analogous properties hold when we replace the entries
with blocks of matrices. We’ll study this more closely soon.

Finally, the main point here is that every property about determinants can
be interpreted geometrically in terms of oriented volumes. For instance, if
two of the columns are linearly dependent, your box is “missing” a dimension and
it has been flatted in some way to have zero n-volume.

Thus, we will eventually have three different ways to look at determinants:

• geometrically (as measuring oriented volumes),
• algebraically (as a function of the entries of a matrix), and
• spectrally (as the product of eigenvalues of the transformation).

2. Cramer’s Rule

One of the most useful applications is Cramer’s Rule, which gives an explicit
formula to express a solution to a system of linear equations in a very specific
situation.

Theorem 1. (Cramer’s Rule) Let A~x = ~b be a system of n linear equations in n
variables, so A is a square, and assume that det(A) 6= 0. Then

~x =

(
det(A1)

det(A)
,

det(A2)

det(A)
, . . . ,

det(An)

det(A)

)T

where Ai is the matrix where we replace the ith column of A by b.

One can also understand this result geometrically. (How?) This works because

~x = A−1~b and we are essentially calculating the inverse of A.

Example 2. Consider the matrix

A =

1 4 5
0 2 6
0 0 3

 ~x =

0
1
0

 = ~b.

Note that det(A) = 6 6= 0 and so we can apply Cramer’s rule in this situation.
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We calculate

det(A1) = det

0 4 5
1 2 6
0 0 3

 = −12

det(A2) = det

1 0 5
0 1 6
0 0 3

 = 3

det(A3) = det

1 4 0
0 2 1
0 0 0

 = 0.

Therefore,

~x =

−2
1
2
0.


We check that

A~x =

1 4 5
0 2 6
0 0 3

−2
1
2
0.

 =

0
1
0

 .
3. Expansion by Minors

Determinants of matrices are important to compute, but it’s not always easy.
It’s also not obvious how to find determinants beyond the 2 × 2 or 3 × 3 cases,
because we no longer have a simple formula that we can get just by multiplying
entries diagonally in some particular way.

Minors are very useful because often it’s sometimes easier to evaluate determi-
nants by a technique called “expansion by minors.”

Definition 1. (Apostol) Given a square matrix A of order n ≥ 2, the (k,j)-th
minor of A, denoted Akj , is the square matrix of order (n−1) obtained by deleting
the kth row and the jth column of A.

Remark 2. This is a slightly nonstandard definition of a minor of a matrix. We
usually call the determinant of such matrices the minors. We will return to this in
the next section.

Theorem 3 (Expansion by Minors, Apostol, Theorem 3.9). For each n > 1 and
each 1 ≤ k ≤ n,

det(A) =

m∑
j=1

(−1)k+jak,j det(Ak,j).

Remark 4. Note the changes in sign! It is critical that you remember the signs:+ − + − · · ·
− + − + · · ·
+ − + − · · ·


What is this really saying? It’s sort of strange that this statement even holds.

From the formula alone, it’s a little hard to get an idea of what’s really going on.
Let’s try and illustrate this with an easy example.
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Example 5. Compute the determinant of10 0 −3
−2 −4 1
3 0 2


Solution. We have

det

10 0 −3
−2 −4 1
3 0 2

 = 10 det

[
−4 1
0 2

]
− (−2) det

[
0 −3
0 2

]
+ 3 det

[
0 −3
−4 1

]
= 10[(−4)(2)− (0)(1)] + 2[(0)(2)− (0)(−3)] + 3[(0)(1)− (−4)(−3)]

= 10(−8) + 2(0) + 3(−12)

= −80− 36

= −116.

We could also have chosen to expand the determinant differently. The easiest
would probably be along the second column, since there are two zeroes in it. Let’s
do it!

det

10 0 −3
−2 −4 1
3 0 2

 = (−0)M + (−4)M +−(0)M

= −4(20 + 9)

= −116.

We could also expand along rows, using the fact that det(A) = det(AT ).
Just as a sanity check, let’s try and compute the 3 × 3 determinant the usual

way:

det

10 0 −3
−2 −4 1
3 0 2

 = −80 + 0 + 0− 36− 0− 0 = −116.

�

3.1. Minors and Rank. Minors can be defined for arbitrary matrices.

Definition 6. A k× k minor (a.k.a. order k minor) is the determinant of a k× k
submatrix of a n×m matrix obtained by deleting rows and columns.

Note that while Apostol’s “minor” is a matrix, the usual definition of “minor”
is as a number (or a function, if the entries are undefined).

Observation. Let A be an n×m. Then

rank(A) = maximal order of nonzero minors of A.

Idea behind the proof. If a k × k minor is nonzero, the corresponding columns
of A are linearly independent.

This can often make certain calculations easier. Let’s see a couple of examples.

Example 7. What is the rank of

A =

1 0 2 1
0 2 4 2
0 2 2 1

?
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Of course, one way to find this is to transformation A into reduced row echelon
form, but let’s try and find it using minors.

Since row rank equals column rank equals rank, and we have a 3× 4 matrix, the
rank of A is at most 3. Note that

det

1 0 2
0 2 4
0 2 2

 = 4 + 0 + 0− 0− 9− 0 = −4 6= 0

so the rank of A is at least 3. Therefore, the rank of A is 3.

Example 8. Are (1, 1, 0)T and (0, 1, 1)T linearly independent?
Of course, the answer is yes, since neither vector is a multiple of another, but

we can also check this via minors. Note that

A =

1 0
1 1
0 1


has a nonzero 2× 2 minor

det

[
1 0
1 1

]
= 1.

Therefore, A has rank 2. Therefore, the two vectors are linearly independent.

3.2. Aside: Computation Complexity of Determinant Computation. For
those of you with interests in computer science, applied math, or engineering, one
thing you might think about is, what is the computational complexity of computing
the determinant of an n × n matrix? Roughly speaking, computational complex-
ity represents the number of elementary arithmetic operations (like addition and
multiplication) that you must perform in order to compute some operation.

As we have seen, calculating the determinant gets much more complicated once
we get to 4×4 matrices and higher. If you don’t know any special properties about
your matrix, e.g. if it isn’t in some special form like block-diagonal or if you don’t
know the eigenvalues, then calculating the determinant will be long and tedious.

Indeed, even if we restrict to matrices with entries in the integers, naively apply-
ing expansion by minors will result in an O(n!) operation, that is, the number of
operations involved will have a dominant term of Cn! for some positive constant C.
Obviously, such a number will grow quickly. There’s a very clever way to do this
that that will give you an O(n4) operation, but even such a result is not feasible in
practice. Gaussian elimination is an O(n3) operation, and as we saw, we can find
determinants in this way as well, but having O(n3) is only remotely plausible if we
work over finite fields, for instance, if only consider entries in the matrices mod-
ulo some prime number. There are whole disciplines of applied and computational
mathematics that try to find new ways to compute determinants, since it’s such a
important quantity of compute.

What often happens in practice is that you have to sacrifice a good deal of
precision and just find ways to bound your determinant. For instance, you may
have to deal with n × n matrices where n = 10000 or so, and without knowing
that it has some special properties (e.g. that it’s symmetric, Hermitian, or has a
nice matrix decomposition), you often just have to settle for whatever Matlab or
something can pop out, and for the computation to even finish, you have to set the
precision relatively low and hope that you get something useful.
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4. Hadamard Matrices

Recall that I gave a challenge problem some time ago involving determinants. It
turns out that given the techniques we have learned today, we can prove this result
in a very nice way.

Proposition 1. Prove that the determinant of an k × k matrix with entries only
±1 must be divisible by 2k−1.

Proof. Let A be a given k × k matrix with entries only ±1. Add its first row to
the other (k − 1) rows to get a new k × k matrix B. By the properties of the
determinant, det(B) = det(A). Since the elements of A are ±1, the lower (k − 1)
submatrix of B consists of entries 2,−2 or 0.

Expanding by minors across the first row, we obtain

det(B) =
k∑

j=1

(−1)1+jb1j det(B1j).

Since all elements of B1,j are ±2 or 0, it means det(B1j) can only be 2k−1, 0 or
−2k−1, which are all divisible by 2k−1. Therefore, 2k−1 | det(B) = det(A). �

Such {±1} square matrices appear in many parts of mathematics. Indeed, they
lead us to an edge of our current knowledge of mathematics.

For instance, over a century about, Jacques Hadamard, a French mathematician,
proved that for such matrices,

|det(A)| ≤ kk/2.
Matrices that meet this upper bound are called Hadamard matrices and are the
{±1}-matrices with orthogonal columns. This bound can only be attained when
k = 1, 2, or a multiple of 4; one reason that you cannot have orthogonal matrices
in odd dimensions, because there is no sum of an odd number of ±1’s that equals
zero.

However, for k not in the cases above, the bound |det(A)| is not known in general!
For smaller cases, it is known, since we can just consider all such matrices, but this
becomes hard as k gets large. Furthermore, it is also open whether a Hadamard
matrix of size 4k exists for every k ≥ 1. I believe the smallest k for which this is
open is k = 668. Note that if we were to try and do this by exhaustive search,
we would have to check 2668×668 matrices. Recall that the number of atoms in the
observable universe is close to 1080, so 2446224 = 16116556 is enormous! Barring
some extreme change in the nature of computation, it is unfeasible to attack such
problems with brute force methods.


