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1. Linear Algebra from 10,000 feet

This is the last recitation for the quarter, so I think it’s worthwhile to look back
at the course and look at what the main ideas are and what are the details. My own
personal perspective is that most of what you learn in your first course in linear
algebra follows from three theorems. The first two are familiar, and we’ve been
using them throughout the course.

Fundamental Theorem of Linear Algebra: “row rank = column rank.” Much of
linear algebra would not be possible, were this not true.

The Grand Theorem of Linear Algebra: Let A be a square n × n matrix. The
following are equivalent:

• Ax = b has a unique solution x for every n-dimensional vector b
• Ax = 0 has only the trivial solution
• A can be row-reduced to the identity matrix
• A has full column rank, that is, the columns of A are linearly independent
• A has full row rank, that is, the rows of A are linearly independent
• A is invertible
• det(A) 6= 0
• A does not have zero as an eigenvalue.

If you remember anything from this class, let it be the result above. Indeed,
everything in this class is more or less a corollary of either the Grand Theorem of
Linear Algebra above or the Spectral Theorem, which we will cover later today.

But first we will talk about four special classes of matrices, all of which corre-
sponds to normal operators, which are the linear transformations to which one can
apply the spectral theorem.

2. Orthogonal Matrices

Definition 1. A square matrix O with real entries with is said to be orthogonal
if its columns and rows are orthonormal (i.e. are orthogonal unit vectors).

Equivalent, a matrix O is orthogonal if its transpose is equal to its inverse:

OT = O−1

that is,
OTO = OOT = I.

Remark 2. Note that orthogonal matrices have orthonormal columns and rows, not
just orthogonal!

Special properties of orthogonal matrices:

• O is always invertible with inverse O−1 = OT .
• O is always unitary, that is O−1 = O∗.
• O is always normal, that is, O∗O = OO∗.
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• det(O) = ±1.
• The product of two orthogonal matrices is orthogonal.

How to think of an orthogonal matrix? A orthogonal matrix represents a linear
transformation on the real numbers that preserves the dot product of vectors, that
is, for any v and w upon which O acts, we have

v ·w = (Ou) · (Ov).

What this means is that O represents an isometry of Rn, that is, a transformation
of Rn that preserves all distances. Examples include rotations and reflections.

Indeed, all the orthogonal matrices of det(O) = 1 are rotations.

Example 3. The 2× 2 rotation matrix[
cos θ − sin θ
sin θ cos θ

]
3. Unitary Matrices

A unitary matrix is the complex-valued generalization of an orthogonal matrix.

Definition 1. A complex square matrix U is unitary if

U∗U = UU∗ = I

where U∗, as usual, represents the conjugate transpose.

Since a unitary matrix generalizes orthogonal matrices, many of the properties
for orthogonal matrices also hold for unitary matrices.

Special properties of unitary matrices:

• Given two complex vectors v and w, multiplication by U preserves the dot
product:

v ·w = (Uv) · (Uw).

• U is normal.
• U is diagonalizable, and moreover, U is unitarily similar to a diagonal

matrix, that is,

U = V DV ∗

where V is unitary and D is diagonal and unitary. Thus, we see that the
eigenspaces span the entire space.

• The product of two unitary matrices is unitary.
• | det(U)| = 1. Note that we taking the absolute value. This is also the main

reason why U is called “unitary.”
• The eigenspaces U are orthogonal.
• Every eigenvalue of U has absolute value 1.

Example 2.
1

2

[
1 + i 1− i
1− i 1 + i

]
Indeed, we check

AA∗ =
1

4

[
4 0
0 4

]
= I2.
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4. Hermitian matrices

Hermitian matrices are the complex-valued generalizations of real symmetric
matrices.

Definition 1. A Hermitian or self-adjoint matrix H is a square matrix with
complex entries that is equal to its own conjugate-tranpose, that is,

H = H∗.

Remark 2. In physics and some fields of mathematics (especially ones related to
physics), U∗ often represents complex conjugation and U† (“U dagger”) is used to
denote the conjugate-transpose. However, for this class, we will follow the conven-
tion in Apostol, so that U∗ represents the conjugate transpose.

The most important property of Hermitian matrices is that like real symmetric
matrices, all the eigenvalues of a Hermitian matrix are real. However, Hermitian
matrices also have a number of other important properties.

Special properties of Hermitian matrices:

• All eigenvalues of H are real.
• The diagonal entries of H are real.
• H is normal.
• H has n linearly independent eigenvectors.
• det(H) is real.

• The sum of two Hermitian matrices is Hermitian.
• The inverse of a Hermitian matrix is Hermitian.
• The product of Hermitian matrices A and B is Hermitian if and only if
AB = BA, that is, that they commute. In particular, the powers Ak are
Hermitian.

• The complex Hermitian matrices do not form a vector space over C. For
instance, In is Hermitian, but iIn is not, because it has complex (indeed
purely imaginary) diagonal.

A good analogy to keep in mind is that taking the adjoint (conjugate transpose)
is sort of like complex conjugation on C. A complex number z is real if and only
if z = z, so a Hermitian operator H = H∗ is analogous to a real number. This is
reflected in some of properties H satisfies, including some of those listed above.

Example 3.  1 2 + i 3
2− i 4 5i

3 −5i 6


Hermitian matrices are especially important in physics, because they are often

used to represent things that are observable. This is primarily because of the nice
fact that the eigenvalues are always real.

5. Skew-Hermitian matrices

Just like Hermitian matrices, skew-Hermitian matrices generalize real skew-
symmetric matrices.
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Definition 1. A square matrix with complex entries S is said to be skew-Hermitian
or antihermitian if its conjugate transpose is its negative, that is,

S∗ = −S.

Special properties of skew-Hermitian matrices:

• All entries on the diagonal must be purely imaginary.
• The eigenvalues of S are all purely imaginary.
• S is normal.
• S is diagonalizable and has orthogonal eigenvectors for distinct eigenvalues.
• Both iS and −iS are Hermitian.
• Sk is Hermitian if k is even and skew-Hermitian if k is odd.
• If A and B are skew-Hermitian and a, b ∈ R, then aA + bB is skew-

Hermitian.
• exp(S) =

∑∞
n=0

1
n!S

n is unitary.

A neat fact is that an arbitrary square matrix M can be uniquely written as the
sum of a Hermitian matrix H and a skew-Hermitian matrix S:

M = H + S

where

H =
1

2
(M +M∗), S =

1

2
(M −M∗).

Thus, following the analogy with Hermitian matrices above, the skew-Hermitian
matrices act like the purely imaginary part of complex numbers.

Example 2. [
i 2
−2 i

]
These definitions may seem like arbitrary things to learn, but they are incredibly

important and show up everywhere matrices are found, from physics to computer
science. For instance, the Standard Model of particle physics, our current best the-
ory for the universe, has a gauge group (roughly, a representation of the symmetry
of the model) of the form

U(1)× SU(2)× SU(3)

This is a 1 + 3 + 8 = 12-dimensional vector space where the factors represent the 1
photon, 3 vector bosons, and 8 gluons of the Standard Model. But you now know
what these letters mean! The U stands for the unitary matrices, and SU ’s represent
the special unitary matrices, that is, the unitary matrices of determinant 1.

6. Spectral Theorem

As a preview of things to come (but not in this course), the following result is
one of the crowning achievements of linear algebra. Among other things, it tells us
exactly when we can diagonalize a matrix.

Theorem 1. (Complex Spectral Theorem) Suppose that V is a finite-dimensional
complex inner product space and let T ∈ L(V ). Then V has an orthonormal basis
consisting of eigenvectors of T if and only if T is normal.
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Remark 2. Warning! This is a relatively high-level result that is (unfortunately)
usually not covered in a first linear algebra class. The problem is that the proof is
fairly involved. Indeed, our textbook does not contain this incredibly useful result,
only some of its corollaries (e.g. every n × n Hermitian or skew-Hermitian matrix
is diagonalizable).

However, while you probably can’t directly use this result on your homeworks or
exams, it’s something that is good to know. For instance, know that if you’re, say,
trying to diagonalize a matrix and it’s NOT normal, then you will always fail!

Here’s one example of the kind of results that follow from the theorem. Note
that with this, we can prove a fairly significant result in just a couple of lines.

Example 3. A normal operator on a (finite-dimensional) complex inner-product
space V is self-adjoint if and only if all its eigenvalues are real. (This result strength-
ens the analogy, in the case of normal operators, between Hermitian matrices and
real numbers.)

Proof. Let T ∈ L(V ) be normal. If T is self-adjoint, then all its eigenvalues are real.
Conversely, suppose that all the eigenvalues of T are real. By the complex spectral
theorem, there is an orthonormal basis (e1, . . . , en) of V consisting of eigenvectors
of T . Therefore, there exists real numbers λ1, . . . , λn such that Tej = λjej for
j = 1, . . . , n. The matrix of T with respect to the basis (e1, . . . , en) is the diagonal
matrix with λ1, . . . , λn on the diagonal. The matrix equal equals its conjugate
transpose and so T = T ∗. Hence, T is self-adjoint. �


