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1. Big Picture: A Classification of Linear Transformations

What does a linear transformation “look like”?
It turns out that there is a one-to-one correspondence between linear transfor-

mations T : Rn → Rm and m × n matrices. This is one of the major conceptual
milestones of this course.

For example, for linear maps R2 → R2, all of them are of the form

T : R2 → R2

(x, y) 7→ (ax + by, cx + dy)

which corresponds to the matrix

[
a b
c d

]
. Thus, these linear maps have a similar

shape, namely, they correspond to a scaling or “shearing” operation that you can
visualize by say, fixing a unit square with lower-left corner at (0, 0) and seeing what
happens to the square when you let T act on R2.

However, this is not the complete truth. I’ve implicitly made an assumption
about choices of bases. Namely, I’ve assumed that both copies of R2 have the same
basepoint (the origin 0) and the same bases x and y, corresponding to the standard
basis e1 = (1, 0) and e2 = (0, 1).

We could also suppose that the second copy of R2 has a different basepoint, say,
(3, 1) instead of the (0, 0), and choose bases x′ and y′ relative to the basepoint, so
x′ is given by the vector (3, 1)→ (4, 1) and y′ is given by the vector (3, 1)→ (3, 2).

To distinguish this slightly modified copy, let’s call this R̃2. This is still a two-
dimensional vector space and so is isomorphic to R2. Since linear maps must map
the origin to origin, the linear maps R2 → R2 are of the form

T : R2 → R̃2

(x, y) 7→ (ax′ + by′ + 3, cx′ + dy′ + 1)

We see that now we have translation by (3, 1) as a valid map from R2 to a copy
of R2. Thus, if we fix the same basepoint and bases, a translation is not a linear
transformation R2 → R2, but if we allow ourselves to change the basepoint, we
allow for translations.

Now, when we usually talk about maps R2 → R2, we’ll assume they have the
same basepoints for simplicity, but maybe you’re wondering, if we give ourselves
the freedom to change basepoints, does that preserve anything about, say, lines or
shapes in the plane? Or is it completely wild?

It turns out that it does in fact preserve a lot of information. If we allow ourselves
to change basepoints, we get a class of maps called affine transformations that give
us all the ways we can “transform” R2 that preserves straight lines and ratios
of distances between points lying on a straight line. Such maps don’t necessarily
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preserve angles or lengths, but many things do hold, like points lying on lines will
still remain on the line after transformation, midpoints of line segments will remain
midpoints of that line segment after transformation, and parallel lines will remain
parallel after transformation.

In the language of linear algebra, we can describe affine transformations very
concisely: they are merely linear transformations followed by a translation.

But why do we care about these weird invariant properties? It turns out that they
can have a lot of scientific meaning. For instance, results like Noether’s theorem in
physics says that invariants are a sign of symmetry, and can point to the fact that
seemingly complicated phenomena in the world can admit a surprisingly simple
description if you look at the problem the right way.

2. Terminology

First a quick note on terminology. Given sets A and B:

• a one-to-one (1-1) mapping f : A → B is map where any two distinct
elements in A map to distinct elements in B.

• a one-to-one (1-1) correspondence f : A→ B is a one-to-one mapping whose
image is all of B. That is, each element in A “corresponds” to a unique
element in B.

Remark 1. These are called injections and bijections, respectively, by mathemati-
cians.

3. Inductive Proofs

You’ve seen these before, especially if you’ve taken any sort of discrete math
class, but it is good to review since it’s a useful tool and allows for a clear solution
to one of your homework problems.

This is a method for proving a statement P for all natural numbers n and higher.
There are two steps involved:

(a) The base case, checking the lowest case (usually n = 1).
(b) The induction/inductive step, where you assume P is true for a given n (the

induction hypothesis) and deduce it for the n + 1 case.

Remark 1. This is not circular reasoning, despite the fact that you assume the
statement is true to prove it for the next case. Think of the induction step as
setting up a chain of dominos, and your proof of the base case as the flick that
allows you to knock them all down and prove your statement.

Here’s a result that admits an argument by induction. Indeed, most non-
induction proofs of this result are not usually rigorous.

Proposition 2. Let A be an invertible matrix. For all n, (An)−1 = (A−1)n.

Proof. We will prove this by induction on n.
Base case: For n = 1, we have (A1)−1 = A−1 = (A−1)1 so our base case holds.
Inductive step: Assume that (Ak)−1 = (A−1)k. We want to show that (Ak+1)−1 =

(A−1)k+1. We have

An+1(A−1)n+1 = AAn(A−1)nA−1 = AIA−1 = I

where the second equality uses the induction hypothesis. Therefore, (A−1)k+1 is
the inverse of Ak+1.



MA 1B RECITATION 01/24/13 3

By the principle of mathematical induction, our statement is true for all n ≥
1. �

As a challenge problem, try the following crazier result, which admits a surpris-
ingly simple proof by induction on n.

Proposition 3. Let A be an n× n matrix whose entries are only 1 and −1. Then
2n−1 divides det(A).

4. Analyzing linear maps

Since one of our homework problems involves linear maps on the polynomial
space F [x], let’s get a little more practice with this.

Let V be the linear space of all real polynomials p(x). Let R,S, T be functions
which map an arbitrary polynomial p(x) = c0 + c1x + · · · + cnx

n in V onto the
polynomials r(x), s(x), and t(x), respectively, where

r(x) = p(0), s(x) =

n∑
k=1

ckx
k−1, t(x) =

n∑
k=0

ckx
k+1.

Question 1. Are the maps R,S, and T linear? What are their null space and
range?

To prove things are linear, we need two elements and two constants, so let
q(x) =

∑
i dix

i ∈ V and a, b ∈ R. Write ap + bq =
∑

i uix
i where ui = aci + bdi.

We have R(p) = p(0) = c0, so

R(ap + bq) = u0 = ac0 + bd0 = aR(p) + bR(q)

so R ∈ L(V ).
Now, S(p) = (p− c0)/x, so

S(ap + bq) =
(ap + bq)− (ac0 + bd0)

x
=

a(p− c0) + b(q − d0)

x

= a
p− c0

x
+ b

q − d0
x

= aS(p) + bS(q)

so S ∈ L(V ).
Finally, T (p) = xp, so

T (ap + cq) = x(ap + bq) = axp + bxq = aT (p) + bT (q),

so T ∈ L(V ) as well.
Before we answer the question about nullspace and range, it’s best to prove the

following lemma.

Lemma 2. Let U be a vector space and f, g ∈ L(U) with f ◦ g = idU . Then
N(g) = 0 and f(U) = U .

Proof. For u ∈ U ,

u = idU (u) = (f ◦ g)(u) = f(g(u)),

so u ∈ f(U) and hence f(U) = U . Similarly, if u ∈ N(g) (note this is nonempty
because 0 is always in the nullspace), then g(u) = 0, so u = f(g(u)) = f(0) = 0.
Hence, N(g) = 0. �

Now it turns that we can answer an associated question at the same time.
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Question 3. The map T is one-to-one on V . Can you show that N(T ) = 0 and
find an f ∈ L(V ) such that f ◦ T = idV ?

Let f, g ∈ L(V ) and write fg for f ◦g and I for idV , mimicking matrix notation1.
Then (ST )(p) = S(T (p)) = S(xp) and (xp)(0) = 0, so

S(xp) = (xp− (xp)(0))/x = xp/x = p.

In other words, (ST )(p) = p for all p ∈ V , so ST = I. Therefore, by the lemma,
N(T ) = 0 and S(V ) = V .

Now let’s get back to nullspaces and ranges of our operators. We have R(p) = c0,
so R(V ) is the set of polynomials of degree 0. Since p ∈ N(R) if and only if c0 = 0,
we see that N(R) is the set of polynomials with constant term zero.

From above, we know that S(V ) = V . Now, S(p) =
∑n

i=1 cix
i−1 = 0 if and only

if ci = 0 for all i > 0 if and only deg(p) =, so N(S) is the set of polynomials of
degree 0.

From above, N(T ) = 0. Since T (p) = x, we see that T (V ) is the set of polyno-
mials with zero constant term as well.

Question 4. If n ≥ 1, can you express (TS)n and SnTn in terms of I and R?

We have ST = I and In for each positive integer n. Now,

(TS)(p) = T

(
p− c0

x

)
=

x(p− c0)

x
= p− c0 = I(p)−R(p) = (I −R)(p),

so TS = I −R. For n > 1, we have

(TS)n = T (ST )n−1S = TIS = TS = I −R,

so (TS)n = I −R for each positive n.
Finally, we claim that SnTn = I for all positive integers n. We prove this by

induction on n. Since ST = I, our claim holds for n = 1. For n > 1, by induction
we have

SnTn = SSn−1Tn−1T = SIT = ST = I

which implies our result by the principle of mathematical induction.

Example 5. Let p(x) = 2 + 3x − x2 + x3. What is the image of p under each of
the following transformations: R,S, T, ST, TS, (TS)2, T 2S2, S2T 2, TRS,RST?

We have R(p) = c0 = 2, S(p) = (p − c0)/x = 3 − x + x2, and T (p) = xp =
2x + 3x2 − x3 + x4. Since SnTn = I, (ST )(p) = (S2T 2)(p) = p and RST (p) =
(RI)(p) = R(p). Similarly, (TS)(p) = p−c0 = 3x−x2+x3 and (TS)2(p) = (TS)(p).
We calculate

(TRS)(p) = (TR)

(
p− c0

x

)
= T (c1) = c1x = 3x.

Finally,

T 2S2 = T (TS)S = T (I −R)S = TIS − TRS = TS − TRS = I −R− TRS

and so
(T 2S2)(p) = (I −R− TRS)(p) = p− c0 − c1x = −x2 + x3.

1for good reason!


