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1. Eigenvectors and Eigenvalues of a Matrix

Recall that given a matrix A, an eigenvalue of A is a constant λ such that

Av = λv

for some nonzero vector v, called a λ-eigenvector of A.
To me, the eigenvalues represent the “essence” of a linear transformation. Al-

most every property you could want to know about a linear transformation can be
determined once you know its eigenvalues. For instance, you can easily determine
a transformation’s determinant, trace, and whether it’s invertible just by looking
at its eigenvalues.

The most important fact about eigenvalues are the following formulas for the
trace and determinant of an n× n matrix A:

Tr(A) =

n∑
i=1

λi, det(A) =

n∏
i=1

λi

where λ1, . . . , λn are the eigenvalues of A (not necessarily distinct). For example,
from this formula, we see that A is invertible if and only if all its eigenvalues are
nonzero.

Nevertheless, life isn’t perfect, and eigenvalues don’t tell you everything. For
instance, the matrices [

1 1
0 1

]
and

[
1 0
0 1

]
have the same eigenvalues but are not similar and represent two different transfor-
mations.

It is generally long but straightforward to determine the eigenvalues for linear
transformations between finite-dimensional spaces. The infinite-dimensional case
is a another story and has many subtleties. The study of such phenomena led
the development of a discipline of mathematics called functional analysis, which
allowed for the development of the theory of quantum mechanics in the early 20th
century.

Example 1. Consider the matrix

A =

 0 −1 0
0 0 1
−1 −3 3

 .
Find its eigenvalues and eigenvectors.
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Solution. To find the eigenvalues of A, we need to find the roots of the characteristic
equation for A:

p(λ) = det(A− λI) = det

−λ −1 0
0 −λ 1
−1 −3 3− λ


= λ2(3− λ) + 1 + 0− 0− 3λ− 0

= −λ3 + 3λ2 − 3λ+ 1

= −(λ− 1)3.

Therefore, λ = 1 is the only eigenvalue of A and λ has multiplicity 3.
After you’ve done an eigenvalue calculation, it’s always good to do a sanity check

of some sort. One good way is to check that the trace of your matrix is the sum of
your eigenvalues. Indeed, we have

Tr(A) = 3 = 1 + 1 + 1

so we’re OK.
To find the eigenvectors of λ, we need to find solutions to A− λI = 0. We have−1 −1 0

0 −1 1
−1 −3 2

 ∼
1 1 0

0 1 −1
0 2 −2

 ∼
1 0 1

0 1 −1
0 0 0


Therefore, the solution space (A− λI)v = 0 is spanned by

v =

−1
1
1


and so is one-dimensional. In other words, the λ-eigenspace is spanned by the single
vector [1,−1,−1]t. �

Q: Is A similar to a diagonal matrix?
A: No. We can show this as follows. Suppose that A is similar to a diagonal

matrix D. Since similar matrices have the same eigenvalues and multiplicities, D
must also have just one eigenvalue, λ = 1, also of multiplicity 3. However, the only
such matrix is D = I, and there is no matrix similar to I except itself, so we have
a contradiction. Hence, A is not similar to a diagonal matrix.

2. Abstract Eigenvalues and Eigenvectors

It is certainly important to be able to find eigenvalues and eigenvectors of matri-
ces, but like any concept in mathematics, it wouldn’t be accepted as a fundamental
object of study if it didn’t also give you a convenient way to prove some nontriv-
ial properties about what we’re really interested in, which in this case is linear
transformations.

Example 1. Suppose that S, T ∈ L(V ). Show that ST and TS have the same
eigenvalues.

Proof. Let λ be an eigenvalue of ST , so STv = λv for some v 6= 0. We want to
show that λ is also an eigenvalue of TS. We have

TSTv = T (STv) = T (λv) = λTv.
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If Tv 6= 0, then we see that λ is an eigenvalue of TS, and we are done.
If Tv = 0, then we must have λ = 0, which implies that T is not invertible.

Therefore, TS is not invertible and so also has λ = 0 as an eigenvalue. Since λ was
an arbitary eigenvalue, we have shown that every eigenvalue of ST is an eigenvalue
of TS.

To complete the proof, we need to prove if that λ is eigenvalue of TS, then it is
an eigenvalue of ST . However, we obtain this by simply exchanging the roles of S
and T in the above argument. �

Example 2. Let T ∈ L(V ) be an invertible matrix and λ ∈ R\{0}. Show that λ
is an eigenvalue of T if and only if 1

λ is an eigenvalue of T−1.

Proof. Suppose that λ is an eigenvalue of T , so there exists a nonzero vector v ∈ V
such that

Tv = λv.

Applying T−1 on both sides, we get

v = λT−1v.

In other words,

T−1v =
1

λ
v

so 1
λ is an eigenvalue of T−1.

To prove the converse statement, replace T by T−1 and λ by 1
λ and then argue

as above. �

Here are a couple of interesting examples where we can find the eigenvectors
and eigenvalues without finding the roots of the characteristic equation. This is
very useful because for these examples, you probably don’t want to manually try
and compute the characteristic equation; indeed, in the case of a transformation
between infinite-dimensional vector spaces, the characteristic “polynomial” is not
a polynomial at all!

Example 3. Let V be an n-dimensional vector space and let T ∈ L(V ) be given
by

T (x1, . . . , xn) = (x1 + · · ·+ xn, . . . , x1 + · · ·+ xn);

in other words, T is a linear transformation whose matrix representation (with
respect to the standard basis) consists of all 1’s. What are the eigenvalues and
eigenvectors of T?

Solution. Suppose that λ is an eigenvalue of T . The equation Tx = λx becomes
the system of equations

x1 + · · ·+ xn = λx1

...

x1 + · · ·+ xn = λxn.

Therefore,

λx1 = · · · = λxn.

Therefore, either λ = 0 or x1 = · · · = xn.
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First consider the case that λ = 0. Then all the equations above reduce to the
single equation

x1 + x2 + · · ·+ xn = 0.

Thus, 0 is an eigenvalue of T and the corresponding set of eigenvectors is

{(x1, . . . , xn) ∈ Rn : x1 + · · ·+ xn = 0}.
Now consider the case that x1 = · · · = xn = t for some t. The equations above

reduce to the single equation
nt = λt

If t = 0, then we have the previous case, so assume t 6= 0. In this case, λ = n.
Hence, n is an eigenvalues of T and the corresponding set of eigenvectors is

{(x1, . . . , xn) ∈ Rn : x1 = · · · = xn}.
Since Tx = λx implies that λ = 0 or x1 = · · · = xn, we conclude that T has no

eigenvalues other than 0 or n. �

Example 4. Let V be a (countably) infinite-dimensional vector space. Consider
the backward shift operator T ∈ L(V ):

T (v1, v2, v3, . . .) = (v2, v3, . . .).

What are the eigenvalues and eigenvectors of T?

Solution. Suppose that λ ∈ R is an eigenvalue of T . The equation Tv = λv becomes
the system of equation

v2 = λv1

v3 = λv2

v4 = λv3

...

From this, we can see that we can choose v1 arbitrarily and then solve for the other
coordinate

v2 = λv1

v3 = λv2 = λ2v1

v4 = λv3 = λ3v1

...

Therefore, every λ ∈ R is an eigenvalue of T and the set of corresponding eigen-
vectors is given by

{(a, λa, λ2a, λ3a, . . .) : a ∈ R}.
�

Note that this last example is strange in several ways. Why do you think that is?


