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1. Directional and Partial Derivatives

To begin, we will specialize our study from a general multivariable function
(f : Rn → Rm) to the case of a real-valued multivariable function f : Rn → R.
Such a function is sometimes called a scalar field. This is the simplest interesting
case of a multivariable function, but it allows us to illustrate many of the features
that are also present in a more general setting.

Since there is “calculus” in the title of this class, the first natural question is to
ask is “how do you differentiate such a function”? Intuitively, differentation allows
us to find the instantaneous rate of change as you move in the domain. This is easy
enough in R, since we can only move back and forth on the real line, but as you
saw with limits, in R2 and higher dimensions, there are infinitely many ways to
move! This is why we cannot just take a derivative in multivariable calculus. We
must also choose a direction. This leads us to the following definition.

Definition 1.1. The directional derivative of a function f at a point a along a
unit vector u is defined as

f ′(a; u) := lim
h→0

f(a + hu)− f(a)

h
.

Remark 1.2. You may also see the directional derivative denoted as fu(a).

Warning 1.3. Just like in the one-dimensional case, the limit may not exist. For
instance, suppose that a function is not continuous at the point.

Warning 1.4. It is important that the vector u is normalized, or else you will get
the wrong number.

Looking at the definition of directional derivative, we see that this is just a
natural generalization of the one-dimensional derivative you know and love. Often
the u that you choose will be the directions of your basis, such as e1 = (1, 0) and
e2 = (0, 1) in R2. We use these so much that we give these a special name.

Definition 1.5. The partial derivative of f(x1, . . . , xn) at a with respect to xk
is given by

∂f

∂xk
(a) := f ′(a, ek).

Note that ∂f
∂xk

is again a multivariate function, so we can differentiate this with

respect to another variable x` to get a function ∂
∂x`

∂f
∂xk

= ∂2f
∂x`∂xk

, which is called a
mixed partial derivative.

Warning 1.6. Note that the order matters! It is not always true that the equality

∂2f

∂x`∂xk
=

∂2f

∂xk∂x`
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holds. However, in many “nice” contexts, this equality does hold. For instance, it is
a basic theorem that if all partial derivatives exist and are continuous (important!)
on a domain D, then (mixed) partial derivatives commute on that domain.

In this class, we will usually be in these “nice” situations where two partial
derivatives will commute, but just keep in mind that this fails in general.

1.1. How to calculate partial derivatives. In practice, computing partial deriva-
tives is very easy. For instance, to compute ∂f/∂xk, just think of everything except
for the variable xk as constant and differentiate just like you would for one variable.

Let’s start with a simple example.

Example 1. Let’s compute the partial derivatives for the function f(x, y) = x2 −
2xy + y2. Let’s first do it the long way—no shortcuts—along x, just from the
definitions.

We have
∂f

∂x
= f ′((x, y); (1, 0))

= lim
h→0

((x+ h)2 − 2(x+ h)y + y2)− (x2 − 2x+ y2)

h

= lim
h→0

(x+ h)2 − x2

h
+ lim

h→0

2(x+ h)y − 2xy

h
= 2x− 2y,

where the last step is from the usual power rule for a one-dimensional derivative.
Note in particular ∂f

∂x is a function in two variables, even though we have not
explicitly written it as such.

Note that f is symmetric with respect to x and y, so by our shortcut technique,
we easily compute

∂f

∂y
= 2y − 2x.

Remark 1.7. We should probably write ∂f
∂x (x, y), but this notation is cumbersome,

especially once you work in more than two variables. Just make sure that you
understand what the shorthand ∂f

∂x stands for.

2. Total Derivative

We have infinitely many directional derivatives at a given point, each correspond-
ing to a path through that point, but to do calculus, we want a notion of “the”
derivative of a function on Rn. This is given by the notion of total derivative.

Definition 2.1. The total derivative of f at a is a linear transformation Ta such
that

f(a + v) = f(a) + Ta(v) + ||v||E(a,v)

for all v in some ball around a and where E(a,v)→ 0 as ||v|| → 0.

This is the rigorous of working with the following intuitive idea: if you take the
limit of (f(a + v) − f(a))/||v|| as ||v|| → 0, then it (a) has a limit and (b) that
limit is given by Ta.

How should you think about Ta? If you feed Ta a vector, it spits out a number
that tells you how f is changing in that direction. From this, we see how it encodes
all the information about directional derivatives into one object.
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2.1. Differentiability implies that Directional Derivatives Exist. A big the-
orem that we saw in class if that a function is differentiable at a point (i.e. has a
total derivative at that point), then it has all directional derivatives. Indeed, we
have

f ′(a; u) := Ta(u)

for a unit vector u.
There are many examples of functions with only some directional derivatives

and not others. Then these functions cannot be differentiable, however, there are
a number of other subtleties that you should keep in mind.

• A function can have all its partial derivatives and still not be differentiable!
(So there’s no “basis” for directional derivatives.) Consider the function

f(x, y) =

{
0, xy = 0
1
xy xy 6= 0.

This doesn’t have most directional derivatives (so is not differentiable), but
its partial derivatives do exist.

For a more subtle example, consider something like

g(x, y) =

{
xy2

x2+y4 , x 6= 0

0, x = 0.

• A function can have all its directional derivatives and still be continuous!
(See Apostol, p. 257.) However, if we know that a function has a total
derivative, then it is continuous. (So “differentiability implies continuity”
still works in the multivariable setting.)

• Just because a function is differentiable doesn’t mean its partial derivatives
have to be continuous! This is a warning to not assume anything is true
because it “seems like it should be true.”

3. The Gradient

Here comes the first of the three grand objects in multivariable calculus. (The
others are the divergence and the curl, which you will see later. It’s not too far-
fetched of a statement to say that multivariable calculus is the study of div, grad,
and curl.)

Definition 3.1. The gradient of a function f : Rn → R at a point a is defined
as

∇f(a) =

(
∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)

)
.

In particular, note that if f is differentiable, then the gradient of f is precisely the
total derivative of f , written with respect to the standard basis.

Remark 3.2. Think of the gradient as a function from the set of n-variable functions
to the set of n-vectors. You feed it a function, it spits out a vector. You can feed
this vector a point to get information about partial derivatives in every direction
at that point.
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3.1. Computing directional derivatives easily. If a function is differentiable,
we noted above that f ′(a; u) = Ta(u). We also observed that Ta, expressed in
terms of the standard basis, is just ∇f(a). Therefore, if we have differentiability,
the easiest way to compute directional derivatives to note that

f ′(a; u) = ∇f(a) · u.
Here is a problem that exploits a property of the gradient that is a simple conse-

quence of the above method of computing directional derivatives: for differentiable
functions, gradients point in the direction of maximal increase.

Example 2. Find a differentiable function whose maximal directional derivative
at (2, 3) is equal to 1 in the direction (1, 0).

Since the directional derivative in the (1, 0) direction is ∇f(2, 3) · (1, 0), to have
this equal to 1, we need to find a f such that

∂f

∂x
(2, 3) = 1.

There are many ways to find such functions.
Now, for the other condition. In other to be the direction of maximal increase,

(1, 0) needs to maximize ∇f(2, 3) ·v. Recall that a property of the dot product Rn

is that |a · b| = ||a||||b|| cos θ where θ is the “angle” between the vectors. Thus, we
maximize by setting v equal to the (normalized) gradient, that is,

∇f(2, 3) = (1, 0).

We now just need to find a function that satisfies these two conditions. One
example is

f(x, y) =
x2

2
− x+ (y − 3)2.

4. General Derivatives

We’re now going to move beyond the scalar field case and consider functions
f : Rn → Rm. Many of the definitions carry over verbatim to this more general
case. For instance,

f′(a; u) = lim
h→0

f(a + hu)− f(a)

h
.

We usually split up such functions f into scalar-valued functions in each coordinate,
that is, we write

f(x) = (f1(x), . . . , fm(x)).

However, now instead of the gradient, the total derivative expressed in terms of the
standard basis is the Jacobian:

Df(a) =

[
∂fi
∂xj

]
=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn


Remark 4.1. Note that the coordinate functions form the rows of the Jacobian and
the variable of which you are taking the partial derivative form the columns. I like
to think of this as “stacking rows of gradients” to distinguish the Jacobian from its
transpose.



MA 1C RECITATION 04/09/15 5

This looks complicated, but but conceptually nothing has changed: you give Df
a direction, and it tells you how f changes in that direction.

We’ll see more of this next week, so I’ll just stop with introducing this definition.

5. How can you tell if a function is differentiable?

As we saw above, it is very convenient to know that a function is differentiable,
since we have all of these shortcuts that we can use. However, we have not men-
tioned any way for us to determine when a function is differentiable.

The most important such condition is the following result, which is how we
usually show that a function is differentiable at a point.

5.1. An important existence proof. The following theorem is essential; it says
that “usually” (that is, in “nice” circumstances) a total derivative exists.

Theorem 5.1. (“If the partial derivatives are continuous, then the total derivative
exists.”) Let f = (f1, . . . , fm) : D ⊆ Rn → Rm for an a ∈ Int(D) and let ε > 0

be such that Ba(ε) ⊆ D and all partial derivatives ∂fi
∂xj

exist in Ba(ε) and are

continuous at a. Then f ′(a) exists, i.e. f is differentiable at a.

(And of course, f ′(a) is given by the Jacobian matrix [ ∂fi∂xj
(x)] = Df(a).)

Proof. By taking coordinates, we can see that f ′(a) exists if and only if f ′1(a), . . . , f ′m(a)
all exist (and the matrix of f ′(a) has vectors f ′1(a), . . . , f ′m(a)). So we can assume
f : D ⊆ Rn → R.

Define the linear functions L : Rn → R by

L(h) =

n∑
j=1

∂f

∂xj
(a)hi

where h = (h1, . . . , hn) = ∇f(a) · h. (We know that if f ′(a) exists, it has to be L).
Fix small h and for a = (a1, . . . , an), let

φj(t) = f(a1 + h1, . . . , aj−1 + hj−1, t, aj+1, . . . , an).

Then

f(a+ h)− f(a) =

n∑
j=1

φj(aj + hj)− φj(aj).

Note that φj(t) is continuous in [aj , aj + hj ] and differentiable there since

φ′j(x) =
∂f

∂j
(a1 + h1, . . . , aj−1 + hj−1, x, aj+1, . . . , an).

By the Mean Value Theorem,

φj(aj + hj)− φj(aj)
hj

= φ′j(tj(hj)) =
∂f

∂xj
(sj(hj))

where tj(hj) ∈ [aj , aj + hj ] and

sj(hj) = (a1 + h1, . . . , aj−1 + hj−1, tj(hj), aj+1, . . . , an).

We want to show that

lim
h→0

f(a+ h)− f(a)−
∑n

j=1
∂f
∂xj

(a)hj

||h||
= 0.



6 MA 1C RECITATION 04/09/15

But the above expression (inside the limit) is

1

||h||

n∑
j=1

hj

(
∂f

∂xj
(sj(hj))−

∂f

∂xj
(a)

)
∈ R.

Since ||hj || ≤ ||h||, the absolute value of this is bounded by
n∑

j=1

∣∣∣∣ ∂f∂xj (sj(hj))−
∂f

∂xj
(a)

∣∣∣∣ .
But as h→ 0, tj(h)→ aj , so sj(hj)→ a and then by the continuity of the partial
derivatives, at a the last sum converges to 0. �

5.2. Examples.

Example 3. Let’s show that f(x, y) = − cos(xy) is differentiable at (0, 0).
By Theorem 8.3, we can find the partials by taking the other variable to be

constant. We have
∂f

∂x
= y sin(xy)

which is continuous at (0, 0), e.g. by the procedure we discussed in recitation last
week. Similarly,

∂f

∂y
= x sin(xy)

is continuous. Thus, by the theorem above, f(x, y) is differentiable at (0, 0).

Let’s try something a little more complicated.

Example 4. Let’s show that f(x, y) = x2+y is differentiable at (0, 0), directly from
the definition. In other words, we want to find a linear transformation T = T(0,0)
such that

f(v) = 0 + T (v) + ||v||E((0, 0),v)

for all v such that ||v|| < δ where we can pick δ > 0 and such that E(v) =
E((0, 0),v)→ 0 as v→ (0, 0).

This is often difficult, and why we want to use the theorem above when we can;
then all we need to do is produce T . If the partial derivatives exists, we have a
good idea of what the T should be. If you can picture the function like this (it’s
a function from R2 → R, so we can visualize it in 3-space, then the tangent place
should be what we should get if we ignore the E-term.

Anyway, by one of the methods above, we guess T = (0, 1). By substituting it
in the above equality, we can find the E:

f(v) = T (v) + ||v||E(v)

v21 + v2 = (0, 1) · (v1, v2) +
√
v21 + v22E(v)

v21√
v21 + v22

= E(v).

In the second line, technically, v should be a column vector, but I replaced it with
the dot product, which gives the same result in this case.

Finally, let’s confirm that the E works. First, the equality part of definition
certainly holds in some ball around (0, 0). We then need to verify that E → 0 as
v→ (0, 0). We do so with a short ε− δ proof.
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Proof. Let ε > 0. Set δ = ε. We note that if ||v|| < δ, then |v1| < δ = ε. We have

E(v) =
v21√
v21 + v22

≤ |v1| < ε

and so we have shown that E → 0 as ||v|| → 0. �


