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1. Recall: General Multivariable Derivatives

The derivative of a general function f : Rn → Rm has the same definition as for
scalar-valued functions, e.g. we have the directional derivative

f ’(a; u) = lim
h→0

f(a + hu)− f(a)

h

and the other definitions are analogous. It is convenient to write

f(x) = (f1(x, . . . , fm(x)).

But for these functions, instead of the gradient, the total derivative (with respect
to the standard basis) is given by the Jacobian:

Df(a) =

[
∂fi
∂xj

]
=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

...
∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 .
Think about it this way: f eats things in Rn (a direction) and spits out things in
Rm (how the image of a under f changes in that direction).

2. The General Chain Rule

The general chain rule is elegantly expressed in terms of linear algebra.

Theorem 2.1. (General Chain Rule) Suppose that h = f◦g and g is differentiable
at a and f is differentiable at g(a), then

Dh(a) = Df(g(a)) ·Dg(a),

where the · is just matrix multiplication.

Note that the usual one-variable chain rule is just a special case.
In an appendix, I’ll write a proof of a chain rule, stated in more rigorous language.

Remark 2.2. If you’re like me and have trouble keeping track of indices, I rec-
ommend computing the entire Jacobian of the functions you need to differentiate
for the chain rule and multiply it out, even if they only ask for a single partial
derivative.

This seems like a lot of extra work, but it’s not hard and it can save time in case
you make an arithmetic error in the calculation.
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2.1. Another way to think of the chain rule. The formula above is great, but
I find it helpful to think about the chain rule as follows. Suppose that f depends
on x and y, and that x and y in turn depend on t. Thus, to find ∂f

∂t , we need to
sum over all the ways in which f is affected by t, using the chain rule in each case.
In symbols, this is written as

∂f

∂t
=
∂f

∂x

∣∣∣∣
x(t)

∂x

∂t
+
∂f

∂y

∣∣∣∣
y(t)

∂y

∂t
.

This is just one coordinate of the chain rule matrix given by the formula above.

Example 1. Let’s study a one-dimensional example. Things are easier here, since
we can just use the gradient. Suppose that r : R → Rn and f : Rn → R and
g ◦ f = r, then

g′(t) = ∇f(a) · r’(t),
where a = r(t).

Let r(t) = (a cos(t), a sin(t)) and let f(x, y) = x2 − y2, and g = f ◦ r. Then

∇f(r(t)) = (2x,−2y)

∣∣∣∣
r(t)

= (2a cos(t),−2a sin(t)).

We also have r’(t) = (−a sin(t), a cos(t)). Therefore,

g′(t) = ∇f(r(t)) · r’(t)
= (2a cos(t),−2a sin(t)) · (−a sin(t), a cos(t))T

= −2a2 cos(t) sin(t)− 2a2 cos(t) sin(t)

= −2a2 sin(2t).

If you’re geometrically minded, you can picture the saddle and the path that g(t)
takes and that the answer agrees with your intuition.

3. Tangent Spaces

If f is differentiable at a point, we can make sense of the notion of tangent space.
However, in the multivariable context, we define the tangent space with respect to a
level set, rather than to a graph, like tangent lines in single-variable calculus. The
notation I use here isn’t standard, but I don’t know if there’s really any standard
notation in Apostol.

Suppose that f is differentiable at a ∈ Lc(f) = f−1(c). If ∇f(a) 6= 0, then the
tangent space θa(Lc(f)) to Lc(f) at a is

θa(Lc(f)) = {x ∈ Rn | ∇f(a) · x = 0}.
Again, note that the tangent space lives in Rn, not on the graph of the function.

Why is this the correct formula? Recall that the gradient points in the direction
of greatest increase. Thus, if you are orthogonal to the gradient, you are in a
direction of 0 increase (think about the angle formula for thee absolute value of the
dot product). Thus, by moving in any direction in the plane ∇f(a · x = 0 keeps
you inside the level set, because on the level set the function does not change.

Example 2. Let f(x, y) = x2 +y2. Then the level set f−1(1) is the circle of radius
1 in R2. At (1, 0), we have ∇f(1, 0) = (2, 0) and so

θ(1,0)(L1(f)) = {x ∈ R2 | (2, 0) · x = 0},
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which is just a vertical line.

Example 3. (Reconciling our intuition for tangent spaces) Thinking of tangent
spaces on graphs is intuitive, so how can we, say, define a tangent plane to the
graph of f(x, y) = x2 + y2? In order to do this, we need to do the following trick.
Set

g(x, y, z) = f(x, y)− z = x2 + y2 − z
and consider the level set L0(g). This level set consists precisely of the points
(x, y, z) ∈ R3 such that x2 + y2 = z, in other words, it’s just the graph of of f .

Then we see that the gradient of g at, say, (1, 1, 2) is (2, 2,−1). Thus, we have

θ(1,1,2)(L0(g)) = {x ∈ R3 | (2, 2,−1) · x = 0}.
It becomes intuitive what this is if you draw a picture. The vector (2, 2,−1) points
straight out from the graph of f , so the points orthogonal form the tangent plane
at that point.

It’s useful to use this trick on your homework problem, e.g. for finding a vector
that is normal to a surafce.

4. Critical Points

We now return to the scalar field (f : Rn → R) case. Last time we saw that if
a point is a local extremum of a scalar function f , then the gradient of f is zero at
that point.

However, the converse statement is not true. Consider f(x, y) = x2 − y2 at the
point (0, 0). Since we are always interested in finding extrema, even if we have to
search for them among a given set of points, we give these points a name. A point
where the gradient of f is zero is called a critical point (or stationary point) of
f .

Why are these sometimes called “stationary points”? I think the definition
makes the most sense if you think about the problem physically. Say f measures
the temperature in a certain Rn space. Recalling our reasoning on the last problem
from last week, we saw that the gradient points in the direction of greatest change,
in other words, it will always point to the locally “hottest point.” Suppose you
take the gradient of a scalar field at point p, then move a tiny bit in the direction
the gradient is pointing at p, then evaluate the gradient and repeat the process.
If the temperature function is bounded, then by following this process, you will
eventually will arrive at the “hottest point,” and since you are at the hottest point,
no direction will point to a hotter point, and so the gradient will be zero, and you
will remain stationary.

This thinking is slightly misleading in general, since it applies to “coldest points”
as well, but it gives you an idea behind the terminology. Actually, for functions
f(x, y) in two variables, the stationary points correspond to peaks, pits, and saddle
points. In Math 2a, you will study how points converges to these stationary points,
which is a fascinating subject in itself.

To study critical points, we need to look at higher derivatives, much like how
we studied maxima in the one-variable case by looking at the second-derivatives at
that point. To do this, we introduce the following important object.

Definition 4.1. The Hessian matrix of a scalar field f : Rn → R is defined to be

H(x) = [Dijf(x)]ni,j=1
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Remark 4.2. Note that

H(f)(x) = J(∇f)(x).

In particular, the Hessian matrix is symmetric, so there exists a basis of Rn

consisting of the eigenvectors of H.
Observe that if x is an eigenvector of H, then the sign of the derivative in the

direction of x is xH(a)xT . Therefore, the sign of the derivative of f in the various
directions at a corresponds with the signs of the eigenvalues of H. In particular,
we have three cases.

• (H is negative definite) If all the eigenvalues of H are negative, then f has
a maximum.

• (H is positive definite) If all the eigenvalues of H are positive, then f has a
minimum.

• If there are eigenvalues of both signs, then f has a saddle point.

Remark 4.3. Note that this is just a generalization of the second-derivative criteria
for extrema in the one-variable case, i.e. if the function is concave down, then
we have a local maximum; if concave up, then we have a local minimum. We
just have an additional ambiguity here with the saddle point since we are in the
multiple-variable setting.

Example 4. Find and classify the critical points of f(x, y) = x2 + y2.

Solution. We have ∇f = (2x, 2y). Therefore, the only critical point of f is (0, 0).
Computing the Hessian, we find that

Hf =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]
=

[
2 0
0 2

]
.

Therefore, the eigenvalues of Hf are 2 and 2, so Hf is positive definite, implying
that (0, 0) is a local minimum. �

Critical points are subtle objects. They may not always behave like you’d imag-
ine.

For instance, f(x, y, z) = sin(x2 + y2 + z2) is an example that shows that critical
points don’t need to be isolated, since every point in the 3-sphere is a critical point
of f . (Work it out!)

A function may also have no critical points whatsoever. Consider the (slightly

modified) Gaussian function f(x, y) =
∫ y

x
e−t

2

dt. Then ∇f(x, y) = (−e−x2

, e−y
2

),
which is never zero.

Warning 4.4. To find extrema for a function restricted to a region, you must check
the critical points and the boundary points, just like in the single-variable case. This
is because if a function is defined on a region, you may have global extrema that
are not critical points.

4.1. How to find extrema of multivariable functions.

(a) Find and classify all critical points in the defined region and classify them
as local/relative extrema or saddle points by looking at the Hessian at that
point.

(b) Find the extrema on the boundary by evaluating the function at the bound-
ary points, and see if any of these are global extrema (larger or smaller than
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your local extrema found above). Since the gradient may not be zero here,
you don’t have to worry about finding relative extrema or saddle points.

(c) Neatly and clearly describe all the local extrema, the saddles, and the global
extrema on the interior of the region defined, as well as the global extrema
that may lie on the boundary.

5. Appendix: Proof of the Chain Rule

Theorem 5.1. (The Chain Rule) Let f : D ⊆ Rn → Rm and g : E ⊆ Rk → Rn.
Let a ∈ Int(E) and g(a) = b ∈ Int(D) and assume that g′(a) and f ′(b) = f ′(g(a))
exist. Then h = f ◦ g is defined in a neighborhood of a (by continuity of g at a)
and h′(a) exists and is given by

h′(a) = f ′(g(a)) ◦ g′(a).

(Under the standard basis, this is just the Jacobian formula given above.)

Proof. Take a small nonzero y ∈ Rk. Then

h(a+ y)− h(a) = f(g(a+ y))− f(g(a)) = f(b+ v)− f(b)

with b = g(a + y) − g(a) ∈ Rn. Since g is continuous at a (by differentiability at
a), the vector v is small as well (i.e. y → 0 implies that v → 0). Now

v = g′(a)(y) + ||y|| · Eg(a, y)

where Eg(a, y)→ 0 as y → 0 and

f(b+ v)− f(b) = f ′(b)(v) + ||v|| · Ef (b, v)

where Ef (b, v)→ 0 as v → 0. Then

h(a+ y)− h(a) = f(b+ v)− f(b)

= f ′(b)(g′(a)y + ||y||Eg(a, y)) + ||v||Ef (b, v)

= f ′(b) · g′(a)(y) + ||y||E(a, y)

by by linearity of f ′(b) and where

(∗) E(a, y) = f ′(b)(Eg(a, y)) +
||v||
||y||

Ef (b, v).

We need to show that E(a, y) → 0 as y → 0. Since Eg(a, y) → 0 as y → 0 and
linear transformations are continuous, the first term in (∗) goes to zero.

We now prove a little lemma.

Lemma. If T : Rp → Rq is a linear transformation, then for some
c > 0, we have

||T (v)|| ≤ c||v||

for all v ∈ Rp. Proof of Lemma. Let d ≥ ||T (ei)|| for any i = 1, . . . , p
for {ei} the standard basis of Rp. We can write v =

∑p
i=1 αiei, and
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we have

||T (v)|| = ||
p∑

i=1

αiT (ei)||

≤
p∑

i=1

|αi| ||T (ei)||

=≤
p∑

i=1

|αi| · d

= d

p∑
i=1

|αi| · 1

≤ d

√√√√ p∑
i=1

α2
i ·

√√√√ p∑
i=1

12

≤ d
√
n||v||.

Taking c = d
√
n, we are done. �

Now, we have

||v|| ≤ ||g′(a)(y)||+ ||y|| · ||Eg(a, y)||
≤ c · ||y||+ ||y|| · ||Eg(a, y)||

or ||v||||y|| ≤ C + ||Eg(a, y)||, so ||v||||y|| is bounded and Ef (b, v) → 0 as y → 0 (since

v → 0 as well). Therefore, the second term in (∗) also goes to 0. �


