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1. Lagrange Multipliers

Lagrange multipliers are a method to optimize a function f(x) under some con-
straint g(x) = c for some constant c. It is a useful technique that is almost always
faster doing things the “long way,” that is, by finding the critical points, seeing
which ones fit the constraint (or at least are close to it), and seeing which one is
the maximum or minimum.

The reason why Lagrange multipliers work is a pretty clever application of the
gradient and it’s easy and satisfying to see how geometric these results are.

I’ll state a commonly used version of the Lagrange multiplier theorem. More
general versions are available, but I find that this relatively simple version helps
illustrate most of the essential features.

Theorem 1.1. Suppose that the constraint equation g(x) = c is nonsingular, that
is, the function g is differentiable and ∇g 6= 0 at all points in the set {g = c}. If x
is a maximizing (or minimizing) input, then x also satisfies the equation

(∇f)(x) = λ(∇g)(x)

for some scalar λ.

In other words, for, say, the three-dimensional case, we can solve the system of
equations

g(x, y, z) = c

∂f

∂x
= λ

∂g

∂x
∂f

∂y
= λ

∂g

∂y

∂f

∂z
= λ

∂g

∂z

to find a list of f -inputs to check (“checkpoints”). Then we can plug these into f
to get a set of f -outputs, and one of these checkpoints will be the maximum (or
minimum) if it exists.

What’s the geometric intuition here? Suppose that that you at some point in the
domain of f . To increase the function, you want to follow the gradient. However, if
you are constrained in some region (that must satisfy g = c), then we can imagine
ourselves being restricted to this region, but pulled along by gradient (think of it as
like a force vector) in its direction, at least, as much as we can while staying in the
region. Even though the gradient might direct you outside constrained region, you
will be pulled in the component of the gradient that keeps you inside the constrained
region, and you will continue to move (increase) until the gradient points in a direct
that is perpendicular to the constrained region, at which point you are at a local
maximum.
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1.1. Algebra Tips for Lagrange Multipliers.

• Solving for λ and equating the results is usually the fastest way to
start, but sometimes a clever trick will work faster.

• Be careful when you divide by 0! If you solve this (or any system of
equations), where you have to divide by an expression, it is critical that
you consider a separate case where that expression is zero. For instance,
the equation AB = AC implies that B = C or A = 0 (or both). You will
miss check points if you don’t do this!

• Finding “too many” checkpoints is not a problem, as long as they all
satisfy the constraint g = c. When we check the outputs, we can quickly
rule out the points that are not extrema. However, you must not miss any
potential checkpoints!

1.2. Presentation Tips.

• Make a list of (or draw a box around) all of your “checkpoints”
once you complete your problem. In other words, make it absolutely clear
all the f -inputs that you checked, along with their outputs. Lagrange mul-
tiplier calculation can get messy quickly, so don’t lose points unnecessarily!

• Clearly indicate the cases considered (e.g. by underlining them) to
make sure that the grader knows which cases you considered.

Example 1. What is maximum and minimum of f(x, y) = x2 + y3 given the
constraint g(x, y) = x4 + y6 = 2.

Solution. Check that g(x, y) = 2 is a nonsingular constraint. By applying the
method of Lagrange multipliers, we have the system of equations

x4 + y6 = 2 (∗)
2x = λ4x3

3y2 = λ6y5

We want to divide by x and by y to solve for λ, so we need to consider the cases
where x or y is zero.

Case x = 0: In this case, (∗) tells us that y6 = 2 and y = ± 6
√

2, so we have the

checkpoints (0,± 6
√

2).

Case y = 0: Here, (∗) says x4 = 2, so x = ± 4
√

2 and so we have checkpoints

(± 4
√

2, 0).
Case x 6= 0 and y 6= 0: Since x and y are both nonzero, we can divide by x and

y to see that λ = 1/(2x2) = 1/(2y3), so x2 = y3. Then (∗) says that x4 + x4 = 2,
so x = ±1 and y3 = x2 = 1, so we have checkpoints (±1, 1).

Now that we have all the checkpoints, let’s check their outputs under f :

f(0,
6
√

2) =
√

2

f(0,− 6
√

2) = −
√

2 (min)

f(± 4
√

2, 0) =
√

2

f(±1, 1) = 2 (max).

�

Remark 1.2. Observe that if we didn’t consider the cases of x = 0 and y = 0
separately, we would not have found the minimum.
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We could also have solved the third case differently. When x2 = 1, we could have
found y by solving x4 + y6 = 2, so we’d get “extra” checkpoints (±1,−1). These
don’t satisfy the full Lagrange system of equations because x2 6= y3, but since they
do satisfy the constraint equation, the theorem says that the checking process will
show that they are not extrema. Moral: Having extra checkpoints is OK, as long
as they satisfy the original constraint and that you check them at the end.

We could also have solved the example differently. For instance, if we divided
by x − 1, then we need to check the case where x = 1. This also applies to more
general situations. For example, if we divide by y − z3, then we need to separately
check the case when y = z3.

Example 2. (Failure of the Lagrange Multiplier Method) The method of Lagrange
multipliers doesn’t always work, in particular, when the hypotheses of the theorem
fail, you may not find the extrema.

A simple example is given by trying to find extrema of f(x, y) = x2 + y2 subject
to the constraing g(x, y) = x2 − (y − 1)3 = 0. There is a local minimum at (0,1)
(this even turns out to be the global minimum), but we have ∇g(0, 1) = 0, so there
does not exist a λ such that ∇f(0, 1) = (0, 2) = λ · 0.

Remark 1.3. A three-dimensional example of where the Lagrange multiplier method
fails is given in Apostol, p. 317.

2. Multiple Integrals

Just like in the one-variable case, integrals are defined using step functions,
but now the step functions are constant on a finite number of rectangles, instead of
intervals. More precisely, we say that f is integrable with integral I—or

∫
f = I

for short—if there is some unique constant I if for every pair of step functions s
and t such that s(x) < f(x) < t(x) for all x in the domain of integration R, we
have

∫
R
s ≤ I ≤

∫
R
t.

This is a formal definition and you don’t usually integrate things like this in prac-
tice, but it is nice to have this definition handy when dealing with tricky functions
with many discontinuities.

An important result from your book about integration is the following theorem.

Theorem 2.1 (Apostol 11.5). If f is integrable in a region Q = [a, b] × [c, d] and

A(y) :=
∫ b
a
f(x, y)dx exists for all y, then if

∫ d
c
A(y)dy exists, it is equal to

∫ ∫
Q
f ,

that is ∫∫
Q

f(x, y) dx dy =

∫ d

c

∫ b

a

f(x, y) dx dy.

More results are in the chapter (11.12) about regions and when functions are
integrable over those regions.

Let’s go through a simple example to indicate what we expect on your homework
solutions.

Example 3. Assuming that f(x, y) = yex is integrable over R = [0, 1]× [0, 1], what
is
∫ ∫

R
f(x, y) dx dy?

Solution. Since f is integrable, we want to apply Theorem 11.5. Since A(y) :=∫ 1

0
yex dx = y(e − 1) we see that the integral A(y) exists for all y. Since A(y) ins
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also integrable on [0, 1], we have∫ 1

0

A(y) dy = (e− 1)

∫ 1

0

y dy =
1

2
(e− 1).

Therefore, by Theorem 11.5, we have∫∫
R

f(x, y) dx dy =

∫ 1

0

∫ 1

0

yex dx dy =
1

2
(e− 1).

�

Thus, in certain cases, such as when the functions are continuous over the domain
of integration, Theorem 11.5 provides everything you need. However, for some
tricky cases, we need to use the formal definition of integration to get an answer.

Example 4. If a function f defined on R = [0, 1]× [0, 1] is 1 at a finite number of
points x1, x2, . . . , xn and 0 elsewhere, then f is integrable and

∫
R
f = 0.

Proof. We note that f is bounded below by 0 and above by 1. We need to show
that if s and t are step functions such that s < f < t, we must have

∫
R
s ≤ 0 ≤

∫
R
t

and show that 0 is the only value that works in the inequality.
Now, suppose that we are given such step functions s and t. Given any rectangle

in R, there must be some point a in the rectangle on which f(a) = 0, so we must
have s ≤ 0 in that rectangle. Since this holds for all rectangles in R, we must have
s ≤ 0 on R and so

∫
s ≤ 0 by Theorem 11.3 (Comparison Theorem). Since 0 ≤ t,

we must have 0 ≤
∫
R
t by Theorem 11.3 again. Thus, our desired inequality holds

for 0. It remains to show that 0 is the unique value I such that
∫
R
s ≤ I ≤

∫
R
t.

To do this, we argue as follows. Since s ≡ 0 ≤ f , if any other I satisfies the
inequality on integrals, it must be positive. We will show that no positive number
works. Let ε > 0. For each xi = (xi1 , xi2), consider the rectangle

R ∩ [xi1 −
√
ε/8n, xi1 +

√
ε/8n]× [xi2 −

√
ε/8n, xi2 +

√
ε/8n] ⊂ R

and let t be the step function that is 1 on the rectangles above and 0 elsewhere.
Let s be the step function that is zero everywhere. Therefore, we have∫

t ≤ n(2
√
ε/8n)2 =

ε

2

This implies that s ≤ f ≤ t but
∫
t < ε. Therefore, we don’t have the inequality

for integrals for any ε > 0. Hence, 0 is the only value such that
∫
s ≤ 0 ≤

∫
t for

all step functions s and t, and so f is integrable with integral 0. �

2.1. A motivating example. Integration theory as defined above is quite power-
ful, and allows you to integrate functions that are quite pathological. Consider the
following such case.

We want to find the integral of the following function, often called the popcorn
function and is defined for x ∈ [0, 1] as follows:

f(x) =

{
1
q , x = p

q ∈ Q

0, x 6∈ Q.

This function has some curious properties. For instance, it is discontinuous on
Q ∩ [0, 1], because there is a sequence of irrational numbers approximating any
rational number. However, it is also continuous on the irrationals. To see this, let



MA 1C RECITATION 04/23/15 5

a be an irrational number and let ε > 0. Then the set of all rational numbers with
1/q > ε is a finite set S. Therefore, if we set δ to be the minimal distance between
a and any of the points in the set S, then |a− x| < δ implies that |f(x)| < ε.

It turns out that f is integrable and so its integral has a well-defined value. You
might guess that it is zero, but how can we see this? To do this, it helps to first
understand the concepts of measure zero and content zero. They allow us to give
us an answer to the question: When does the integral of a function exist?

3. Measure Zero, Content Zero

Definition 3.1. A set A ⊂ Rn has content zero if for all ε > 0 there exists a
finite collection of rectangles whose union contains A and whose total area (in Rn

sense, e.g. volume when n = 3) is less than ε.

Definition 3.2. A set A ⊂ Rn has measure zero if for all ε > 0 there exists a
(possibly infinite) collection of rectangles whose union contains A and whose total
area is less than ε.

Obviously, a set being content zero implies that it is also measure zero. Let’s
start with the most basic example.

Example 5. Let A = {x1, . . . , xk} be a finite collection of points in R. Then A has
both measure and content zero, since given ε, we can take rectangles [xi−ε/2k, xi+
ε/2k] which contain A and whose area (i.e. length) is less than epsilon.

Example 6. An interval in R (or a rectangle in higher dimensions) has nonzero
measure and content.

Example 7. The rational numbers Q are measure zero but the content is nonzero.
For instance, as we saw in the homework assignment a couple of weeks ago, if we
can to cover the rationals in [0, 1] with a finite number of intervals, we must cover
all of [0, 1] and so we cannot have total area less than 1, so the content 0 criterion
fails for ε < 1 (at least).

The reason why the rationals are measure zero is because they are a countable
set of points. For any countable set of points A, we can put it in bijection with

the natural numbers and consider rectangles of radius ε
2

(
1
2

)i
around every point

xi ∈ A. These rectangles cover all the points and the total area is

ε

2

∞∑
i=1

(
1

2

)i
=
ε

2
· 2 = ε.

Since we can do this for any ε, we see that, for example, the set Q ∩ [0, 1] has
measure zero. (Indeed, Q itself is a measure zero set in R).

Example 8. The Cantor set an example of measure zero set with uncountably
many points. (In fact, it is even content zero!) Therefore, while countable sets have
measure zero, being measure zero doesn’t imply that your set is countable.

4. The Integral of the Popcorn Function

One of the central results in the theory of integration is following theorem.

Theorem 4.1 (Lebesgue). Suppose that f is a bounded function defined on some
domain R. Then f is integrable if and only if the set of discontinuous points of f
has measure zero.
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I’m not sure if you can use this result yet, since its proof uses methods outside
the scope of this class. However, it’s good result to know, just so you can determine
whether a set is integrable or not before you try and work it out.

What you are definitely allowed to use is the following theorem from the book.

Theorem 4.2 (Apostol 11.7). Let f be a bounded function defined on R. If the set
of discontinuous points of f is a set of content zero in R, then f is integrable over
R.

In particular, a function that has only finitely many discontinuities is integrable,
as we saw in example 4.

Anyway, since the popcorn function is discontinuous at the rationals, a measure
zero set, it is integrable, so we know that our proof won’t just crash and burn when
we try and construct the appropriate step functions.

So let’s find the integral of the popcorn function.

Solution. We will show that
∫
f = 0. We begin with a couple of observations.

Any step function s less than f must be zero everywhere, since every interval
contains irrational numbers. Furthermore, any step function t greater than f must
be positive everywhere and thus we must have

∫
t > 0. Thus, we want to show that

given ε > 0, we can find a step function t such that f ≤ t and
∫
t < ε.

Now, there are a finite number of points {xi}Ni=1 such that f(xi) > ε/2. Let d
be the minimum distance between any two points xi and xj , and define a quantity

D = min( ε
2N ,

d
2 ). Define a step function t

t(x) =

{
1, x ∈ [xi −D/2, xi +D/2] for all xi

0, otherwise.

Then f ≤ t and we have
∫
t ≤ ND + ε/2 ≤ ε. Therefore, f is integrable and∫

f = 0. �


