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1. Something Strange

As you move onto higher math, you often run into something called the “curse
of dimensionality,” which, roughly speaking, is the idea that your intuition for how
things work in the 2 or 3 dimension fails horribly in higher dimensions. This is a
recurring theme for things like 4-dimensional spaces and whatnot that you will see
in higher geometry/topology and physics, but it is also a prevalent in fields like
data mining, where you often think of data obeying certain parameters as lying in
some n-dimensional space.

We’ll get our first taste of this in our recitation today. Try and think about how
to solve the following questions. If you can do these problems without any issue,
you should be in good shape for any change of coordinates we’ll encounter in this
class.

(a) Show that the five-dimensional unit ball B5 = {x ∈ R5 : ||x|| ≤ 1} has
volume 8π2/15.

(b) Show that this volume is the largest volume attained by any n-dimensional
unit sphere. In other words, for any Bn = {x ∈ Rn : ||x|| ≤ 1}, we have
vol(Bn) < vol(B5) for n 6= 5.

Thus, we see that 5-dimension sphere take up “more space” than any of the other
spheres in any other dimension! Our goal today is to prove this result by using the
tools that we have developed so far.

2. Change of Variables

Like most things in multivariable calculus, it is best to understand what happens
in the single variable case first. Recall the following result from Math 1a.

Theorem 2.1 (Change of variables, single variable case). Suppose that f is a
continuous function over the interval (g(a), g(b)) and that g is a C1 map from
(a, b) to (g(a), g(b)). Then we have∫ g(b)

g(a)

f(x) dx =

∫ b

a

f(g(x)) · g′(x) dx.

Let’s break this down a little. We see that the integral of f over the (g(a), g(b))
is the same as the integral of f ◦ g over the interval (a, b), except that we need
to correct for how g “shifts the space” going into f . In single variables, we can
represent this change via differential forms. Namely, we integrate by dx on the
left, representing the change in x, and on the right, we integrate with respect to
d(g(x)) = g′(x) dx.

We want to try and do something similar for multiple variables. Let f : Rn → R
be a scalar field and let g : Rn → Rn be a differentiable map. But how do we get a
number that represent how a function “shifts space”? Well, we know that the the
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Jacobian D(g(x)) measures small changes in the vector x, and we recall from Math
1b that det(D(g(x)) measures the volume of the unit cube under the map D(g(x)).
Thus, this quantity, the determinant of the Jacobian of g, tells us how g is shifting
the space around x! Indeed, we have the following result.

Theorem 2.2 (Multivariable Change of Variables). Suppose that R is an open
region in Rn, that g is a C1 map Rn → Rn on an open neighborhood of R, and
that f is a continuous function on an open neighborhood of the region g(R). Then∫

g(R)

f(x) dV =

∫
R

f(g(x)) · detD(g(x)) dV.

3. Common Applications of Change of Variables

There are three common variable changes that we do in multivariable calculus:
polar coordinates, cylindrical coordinates, and spherical coordinates.

Theorem 3.1 (Polar Change of Variables). Let γ : [0,∞) × [0, 2π) be the polar
coordinate map (r, θ) 7→ (r cos(θ), r sin(θ)). Note that γ is C∞. Then D(γ(r, θ)) =[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]
, so det(D(γ(r, θ))) = r, we so∫
γ(R)

f(x, y) dV =

∫
R

f(r cos(θ), r sin(θ)) · r dV

for any region R in R2 and any continuous function f on an open neighborhood of
R.

In other words, if we have a region R described by polar coordinates, we can
say that the integral of f over γ(R) is just the integral of r · f(r cos(θ), r sin(θ))
over this region interpreted in Euclidean coordinates. For example, suppose that
R was the unit disk, which we can express using our polar coordinates map as
γ([0, 1]× [0, 2π)). Then, change of variables tells us that the integral of f over the
unit disk is just the integral of r · f(r cos(θ), r sin(θ)) over the Euclidean coordinate
rectangle [0, 1]× [0, 2π).

We can similarly describe cylindrical coordinates.

Theorem 3.2 (Cylindrical Change of Variables). Let γ : [0,∞)× [0× 2π)×R be
the cylindrical coordinate map (r, θ, z) 7→ (r cos(θ), r sin(θ), z). Now, γ is C∞ and

D(γ(r, θ)) =

cos(θ) −r sin(θ) 0
sin(θ) r cos(θ) 0

0 0 1


so det(D(γ(r, θ))) = r and so∫

γ(R)

f(x, y, z) dV =

∫
R

f(r cos(θ), r sin(θ), z) · r dV,

for any region R in R3 and any continuous function f on an open neighborhood of
R.

Spherical coordinates are just a slightly complicated twist on this general theme.
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Theorem 3.3 (Spherical Change of Variables). Let γ : [0,∞)× [0, π)× [0, 2π) be
the cylindrical coordinate map (r, φ, θ) 7→ (r cos(φ), r sin(φ) cos(θ), r sin(φ) sin(θ)).
Now γ is C∞ and

D(γ(r, θ)) =

 cos(φ) −r sin(φ) 0
sin(φ) cos(θ) r cos(φ) cos(θ) −r sin(φ) sin(θ)
sin(φ) sin(θ) r cos(φ) sin(θ) r sin(φ) cos(θ)


so det(D(γ(r, θ))) = r2 sin(φ) and we have∫

γ(R)

f(x, y, z) dV =

∫
R

f(r cos(φ), r sin(φ) cos(θ), r sin(φ) sin(θ)) · r2 sin(φ) dV,

for any region R in R3 and any continuous function f on an open neighborhood of
R.

Other common coordinate transformations. These are a bit simpler, so I will
omit the details.

• Translations: (x, y, z) 7→ (x + c1, y + c2, z + c3). The determinant of the
Jacobian of such maps is 1. This is pretty obvious, but I state it for com-
pleteness.

• Scalings: e.g (x1, . . . , xn) 7→ (λ1x1, . . . , λnxn). The determinant of the Ja-
cobian of such maps is the product of the scaling constants, that is, λ1 · · ·λn.

• Various composition of these maps. By the chain rule, we know that the
determinant of the Jacobian of the composition is just the product of the
determinant of the Jacobians of the individual maps.

These things are pretty routine and straightforward. The only difficult part is
deciding which coordinate change admits the simplest integral. To see this, it’s
probably best to work through some examples.

4. Examples

Example 1. Find the area in R2 contained inside the ellipse

E :
x2

a2
+
y2

b2
= 1

using change of variables.

Solution. We saw this last week, but here’s a different way to do it. We want to
integrate 1 over the region R contained inside the ellipse. To see this, note that R
is the image of the unit disk D under the scaling map γ(x, y) = (ax, by). Therefore,
by an application of change of variables, we have∫

γ(D)

1 dV =

∫
D

1 · det

[
a 0
0 b

]
dV =

∫
D

ab dV.

Now, by using the polar coordinates for the unit disk D, we describe D as the image
of the rectangle [0, 1] × [0, 2π] under the map α(r, θ) 7→ (r cos(θ), r sin(θ)), we can
apply change of variables again to get∫

γ(D)

1 dV =

∫
[0,1]×[0,2π]

1 · det(Dα) dV =

∫ 1

0

∫ 2π

0

ab · r dθ dr = πab.

Thus, the area of R is πab. �

Example 2. Find the area enclosed by the astroid curve {(x, y) : x2/3 +y2/3 = 1}.
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Solution. This problem might look very familiar! However, it is likely that your
solution to this was rather complicated. We’ll see that change of coordinates will
give us a slick solution.

From looking at the graph of this function, we might try to use polar coordinates,
but if you do that, you will run into problems. Instead, based on the fact that
we used polar coordinates (cos(θ), sin(θ)) to describe the points on the unit circle
x2 + y2 = 1, we want to try and describe our equation via the parametrization
(cos3(θ), sin3(θ)). Thus, we can express the region R contained within the curve as
the image of the rectangle [0, 1]× [0, 2π] under the map

γ(r, θ) = (r cos3(θ), r sin3(θ)).

Thus, by using change of variables with this map, we have∫
R

1 dV =

∫
[0,1]×[0,2π]

1 · det

[
cos3(θ) −3r cos2(θ) sin(θ)
sin3(θ) 3r sin2(θ) cos(θ)

]
dV

=

∫ 1

0

∫ 2π

0

3r(cos4(θ) sin2(θ) + sin4(θ) cos2(θ)) dθ dr

=

∫ 1

0

∫ 2π

0

3r cos2(θ) sin2(θ)(cos2(θ) + sin2(θ)) dθ dr

=

∫ 1

0

∫ 2π

0

3r cos2(θ) sin2(θ) dθ dr

=

∫ 1

0

∫ 2π

0

3r
sin2(2θ)

4
dθ dr

=

∫ 1

0

∫ 2π

0

3r
1− cos(4θ)

8
dθ dr

=

∫ 1

0

3rπ

4
dr

= 3π/8.

�

Example 3. We end our examples with one of the most famous calculations in
mathematics: the calculation of the “Gaussian integral”∫ ∞

−∞
e−x

2

dx =
√
π.

I think this way of solving this integral is originally due to Laplace, from the late
18th century.

Solution. Write I =
∫∞
−∞ e−x

2

. We have

I2 =

(∫ ∞
−∞

e−x
2

dx

)2

=

∫ ∞
−∞

e−x
2

dx

∫ ∞
−∞

e−y
2

dy.

All we’ve done is change the dummy variable for the second integral. We can
express this quantity as a double integral

I2 =

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2) dx dy.
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We can express this in polar coordinates, so we have

I2 =

∫ ∞
0

∫ 2π

0

e−r
2

r dr dθ.

The integrand is independent of π, so we get

I2 = 2π

∫ ∞
0

e−r
2

r dr dθ.

By substituting u = r2, so du = 2r dr, we see that∫ ∞
0

e−r
2

r dr =
1

2

∫ ∞
0

e−u du =
1

2
.

Thus, I2 = 2π · 12 = π and so I =
√
π. �

Remark 4.1. This is essentially the reason why π appears in many probabilistic and
statistical formulas. The ubiquity of Gaussian-style integrals in the world is quite
mysterious, but one interpretation that I like, is that the reason for this is because
the universe is inherently quantum-mechanical, and thus probabilistic.

How does this view approach things like classical mechanics, which is not prob-
abilistic (at least, the way we usually learn it)? It says that these definite things
that we perceive are manifestations of the law of large numbers, which ensures that
averages occur much more frequently than other outcomes. This law is at work, for
instance, when a balloon floats through the air. Inherently, air molecules are hitting
the balloon randomly in all directions, but what we perceive is balloon smoothly
floating through the air in a distinct trajectory, as opposed to randomly jumping
about.

5. The Solution

Now, let’s use the change of variables to prove our surprising result. We can
generalize our three-dimensional spherical coordinates to n-dimensional spherical
coordinates. In other words, let r ∈ [0,∞), φ1, . . . , φn−2 ∈ [0, π), and θ ∈ [0, 2π).
Now, consider the map γ that sends a point (r, φ1, . . . , φn−2, θ) to a point in Rn

with the coordinates

x1 = r cos(φ1)

x2 = r sin(φ1) cos(φ2)

x3 = r sin(φ1) sin(φ2) cos(φ3)

...

xn−2 = r sin(φ1) · · · sin(φn−3) cos(φn−2)

xn−1 = r sin(φ1) · · · sin(φn−2) sin(φn−2) cos(θ)

xn = r sin(φ1) · · · sin(φn−2) sin(φn−2) sin(θ).

We can show that this point x is a point that is distance r from the origin that
has angle φi with the first n-2 coordinate axes and angle θ with the (n − 1)-th
axis. Thus, we see that this is just a generalization of spherical coordinates to n
dimensions.

Inductively, we can show that

det(D(γ)) = rn−1 sinn−2(φ1) sinn−3(φ2) · · · sin(φn−2)
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and thus the volume of the n-dimensional ball, via change of variables, is just the
integral∫ 1

0

∫ π

0

· · ·
∫ π

0

∫ 2π

0

rn−1 sinn−2(φ1) sinn−3(φ2) · · · sin(φn−2) dφ1 dφ2 · · · dφn−1 dr.

From there, we can use induction to prove the recursion relation

vol(Bn) =
2π

n
vol(Bn−2),

which tells us that for n ≥ 7, vol(Bn) is strictly smaller than vol(Bn−2). Checking
the volumes for the balls B1, . . . , B6 then shows that vol(B5) is the greatest amongst
those six balls: therefore, the volume of the five-dimensional unit ball B5 is greater
than the n-dimensional volume of any of the other n-dimensional unit balls, because
the volumes are (as shown) decreasing for n > 6!

These calculations are a little lengthy, but they are totally doable! So if you’re
bored over the long weekend and want some practice, try them out! (Feel free to
ask me if you get stuck.)


