
MA 1C RECITATION 04/05/12

1. Introduction

I’m Brian, and I’ll be your TA this quarter. Here’s some basic info.

Email: bhwang at caltech
Website: http://hwang.caltech.edu/ma1c/
Office: 155 Sloan
Office Hours: Friday 4:00-5:00, or by appointment.

There’s a short questionnaire that I’d like you to fill out if you are planning to
attend this section, so that I can get to know you better. It helps me to learn your
names and make sure that you know where you can go if you need help. Since this
is a core class with many different majors and motivations, I think it’s important
to know what people already know and what they’d like to know (in addition to
the required topics) by the end of the quarter. If you cannot make my listed office
hours, feel free to make an appointment or talk to me to make other arrangements.

The first homework is already up and it is due Monday at 10am. You are
allowed a one-time extension of one week, but you must tell me in advance if
you do. (A quick email is enough.) Otherwise, late assignments are not accepted
without a note from the Dean.

Don’t worry about writing down everything I say or write on the board. You
are free to take notes, but lecture notes will be posted to the section website, so
it’s much more important that you try and follow the train of thought in each
recitation. A good way to review the material is to take bare bones notes, then try
and recreate the lecture yourself later, using the lecture notes as a reference if you
get stuck.

Make sure to check the notes even if you feel like you understand everything in
a recitation. I will sometimes put bonus material in there, or informal thoughts on
how you can attack certain problems.

There’s an anonymous feedback system at the bottom of the section website.
Any constructive feedback is welcome. Since TQFR reports are not available until
after the quarter is over, this is a good way to tell how the recitation is going
throughout the course.

My philosophy towards recitations to focus on the practical skills you need to do
the homework. All the beautiful theory and context will be left to Prof. Flach and
your textbook. Here, I will focus on the essentials and emphasize the quick, dirty
techniques that you will need to succeed in the class.

1.1. Tips on Homework. Try to write in complete sentences. Since this isn’t
your first encounter with proofs, the standards on homeworks will be a bit higher
than in previous courses.

Make sure to cite any theorems that you use and especially to check the
hypotheses. You will lose points otherwise.

Date: April 5, 2012.
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2. Open Sets

2.1. Why should I care? The reason that we care about open sets is that they
give a natural way of describing many things in mathematics. For instance, do you
remember the ε − δ definition of continuity? Or the sequence definition? (If you
don’t, that’s OK. I’ll go over it later.) Both of these are equivalent to the open set
definition, which I find most intuitive. The language of open sets also allows you to
rigorously extend your intuition for the R case to higher dimensional (Rn) cases,
as well as to the setting of much of modern mathematics and physics (manifolds1).

2.2. Definitions. Point-set topology (the subfield of math that includes the study
of basic properties of open sets) is all about balls. What am I talking about? I
mean balls in Rn. More concretely, an (open) ball of radius r about about a point
x ∈ Rn is the set

Br(x) = {a ∈ Rn | |a− x| < r}.
You might also see this written as Bx(r) or Bx(ε) in certain textbooks, but I
recommend the above convention. However, make sure that you stick with one
consistently and make it clear what letter represents the point and the radius.

• A set A ⊂ Rn is open if for any point x ∈ A, there exists an (open) ball
containing x that lies in A.

• We say a set is closed if its complement in Rn is open. Equivalently, a
set A is closed if it contains all its limit points, where a limit point is the
limit of a sequence contained in A. (This is worth proving, to test your
familiarity with these spaces. Do it! )

• The interior of a set A is the largest open set contained in A.

Remark 2.1. The terminology of open and closed sets isn’t the greatest, but it’s so
entrenched in mathematical language that you can’t avoid it. It becomes second
nature once you learn the definitions, but make sure that it is clear.

Warning 2.2. Sets are NOT doors! A set can be open, closed, both closed and
open, or neither closed nor open.

2.3. How do you prove that something is open? An important part of this
course is learning how to rigorously argue things. You got some practice in Math
1a and 1b, but it’s still worth going over.

You prove that a set is open by the following method: Let x ∈ A. Then argue
to produce some r such that Br(x) ⊂ A. You might have to break it into cases
depending on what x is, but once you find such an r for every x, you have shown
that every point has a ball around it.

Many of these things you can “see” intuitively, while others might require a little
work. Let’s quickly run through some examples for subsets of R.

• (0, 1)? Open.
• [9, 10]? Closed.
• (1, 2]? Neither open nor closed.
• ∅ (the empty set)? Open and closed (because it’s vacuously true).
• R? Open and closed.

1We won’t touch on this rich and fascinating subject in this class, but as a first approximation,
these are spaces that look like open sets of Rn that are “patched together” in a special way, and

it is the synthesis of real analysis and topology that allows one to do analysis on such spaces.
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• {1}? Closed.
• (0, 2) ∪ (3, 5)? Open.
• (0,∞)? Open.
• [0,∞)? Closed.
• Q? Think about this. I’ll talk about this shortly.

Remark 2.3. Note that things get a little funky once we start using infinity. For
instance, why don’t we use [0,∞] to denote the closed set? This is because ∞ is
not actually in the set of real numbers. If you go on to more advanced mathematics
courses, you will study analysis in the “extended real numbers,” which do include
∞ and is slightly more subtle than the standard case. However, we will not deal
with such things in this course.

Example 1. Sanity check. Is the open ball open? It better be! Let’s prove this in
the case of the unit ball in the plane R2, that is,

B = {(x, y) ∈ R2 | x2 + y2 < 1}.

Proof. Let v = (x, y) ∈ R2. Let r = 1 − x2 − y2 = 1 − ||v|||. We claim that
Br/2(v) ⊂ B. Pick a w ∈ Br/2(v). Then we have

||w|| = ||w− v + v||
≤ ||w− v||+ ||v||
< r/2 + ||v||

=
1

2
(1− ||v||) + ||v||

=
1

2
(1 + ||v||)

≤ 1,

which proves our claim. �

How did I find this r? The way that I did this is by doing a sort of “lazy
evaluation,” not assigning a value to r until I am just about the use its value at a
crucial point in the argument. In many basic examples, this is a good way to find
r if you don’t have a good idea of what it should be.

Example 2. What about the rational numbers Q? The rationals are not open. In
fact, Q has empty interior. How can you show this? Let x be any rational number
and r > 0 be any radius. Then Br(x) must contain an irrational number and so
Br(x) is not contained in Q. Hence, the rational numbers contain no open sets and
so the interior is empty.

What about the irrational numbers I = R\Q? The same argument works. Thus,
we see that the rational numbers are neither open nor closed.

3. Limits

You certainly got practice with limits of sequences in one real variable, and the
higher dimensional cases are similar, except that you replace the absolute value
with a norm. For instance, we have the following definition for limits of sequences.

Definition 3.1. If {xi} is a sequence in Rn, then we say that limi→∞ xi = L if
for any ε > 0 there exists an N ∈ N such that ||xi − L|| < ε for all i > N .
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Limits and continuity are closely interrelated. One reason why they are impor-
tant is that if a function f has a limit at a point, then f can sometimes be “made
continuous” at that point by setting its value to its limit. (Think of a smooth graph
in the xy-plane but with a discontinuous jump at one point.) The formal definition
is as follows.

Definition 3.2. A function f (on Rn) has a limit L at a, which we denote by
limx→a f(x) = L, if for any ε > 0 there exists a δ > 0 such that if ||x − a|| < δ,
thehn ||f(x)− f(a)|| < ε.

3.1. How to prove something has a limit. You show that a limit exists by
exhibiting an N (for sequences) or a δ (for functions) for any given ε.

A good way to show that a limit does not exist at some point a, is to find two
sequences {xi} and {yi} approaching a such that {f(xi)} and {f(yi)} have different
limits. Note that this is not a good way to showing that there is a limit, since there
are infinitely many sequences that approach a.

Let’s see an example of each.

Example 3. Let f(x, y) = x2 + y2. Show that lim(x,y)→(0,0) f(x, y) = 0.

Proof. Let ε > 0. Pick δ =
√
ε. If ||(x, y)|| =

√
x2 + y2 < δ, we have f(x, y) =

x2 + y2 < ε, as desired. �

Example 4. Show that the function f(x, y) = x2

x2+y2 does not have a limit at (0, 0).

Solution. Let vi = (1/i, 0) and wi = (0, 1/i) be two sequences in R2 that tend to
(0, 0) as i → ∞. Then f(vi) = (1/i2)/(1/i2) = 1 and so f(vi) → 1 as i → ∞.
However, f(wi) = 0 and so f(wi) → 0 as i → ∞. These limits do not agree, so f
does not have a limit at (0, 0). �

4. Continuity

Continuity in one real variable is fairly intuitive, and in multivariable calculus,
you can still use your intuition, but things becomes subtle in certain cases. For
instance, there are more ways that a function can be discontinuous in the higher
dimensional case.

Definition 4.1. We say that a function f : Rn → Rm is continuous at a point
a ∈ Rn if limx→a f(x) = f(a). We say that a function is continuous if it is
continuous at all points.

Remark 4.2. One way to interpret this definition is to simple say that a function
has a limit at a point a, and the value of the function at a is precisely the limit.

One easy implication of this is that one way to show that something is not
continuous at a point is to show that it doesn’t have a limit there. For instance,
in our second example in the previous section, the function f is discontinuous at
(0, 0).

For convenience, let’s also recall the ε-δ definition, which is often useful for
proving things.

Definition 4.3. A function f is continuous at a if given any ε > 0, there exists
a δ > 0 such that if ||x− a|| < δ, then ||f(x)− f(a)|| < ε.



MA 1C RECITATION 04/05/12 5

However, as you may recall, it is usually difficult (or at least tedious) to prove
that a function is continuous just from the definition. So how should you prove
something is continuous?

4.1. How to prove continuity. Here’s a general algorithm of sorts for proving
continuity.

(a) Carefully look at the function (is it a rational function? is it a composition
of certain functions? draw it if you can!) and get an idea of where it might
be continuous or not.

(b) Use the facts on pages 248-250 to show that the function is continuous at
most of the points. After this, you should only have a few points, or certain
types of points that you need to show are continuous or not.

(c) Prove whether the function is continuous at these remaining points. To
prove continuity at a point, use a δ-ε argument. To prove discontinuity at
a point, you usually show that there exists a sequence xn → x such that
limxn→x f(xn) 6= f(z).

Remark 4.4. It is particularly easy to show that a function is discontinuous at a
point if it is not defined at the point. Then you can simply say that it is not defined
at point and not have to prove anything. For instance, 1/x is not defined at x = 0,
and so it is discontinuous at x = 0.

Remark 4.5. Don’t make this harder than this needs to be. Use the facts on pages
248-250! Remember to cite them, or at least say something like “since 1/x is a
rational function, it is continuous when x 6= 0.”

Let’s go through a couple of examples.

Example 5. Consider the function f(x, y) = sin(x) cos(y)
x . Where is f continuous?

“Solution”. We know that sin, cos, and y (the identity function for y) are defined
and continuous for all real numbers. Now, 1

x is defined (and continuous) for all
x 6= 0 since it is a rational function. By Theorem 8.1 (basic facts about how limits
behave under operations) and Theorem 8.2 (about composite functions), we then
conclude that f(x, y) is defined (and continuous) precisely on the set of points that
x 6= 0. �

Remark 4.6. The “proof” above would not be sufficient for full points on a home-
work assignment. However, it gives you an idea of the general argument.

Many basic examples will take this form. Sometimes it is enough to just figure
out where the function is defined, then apply the above theorems. The following is
an example of a function that we can “make continuous” at a point.

Example 6. A priori, the function xy sin(1/xy) is not continuous at (0, 0) because
it is not defined at 0. However, if we define its value at (0, 0) to be 0, is it continuous?
In other words, is the function

f(x, y) =

{
xy sin(1/xy), (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

continuous at (0, 0)?
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Solution. Yes! Let ε > 0. Choose δ = min(1, ε). If ||(a, b)|| < δ, then |a| < δ ≤ 1
and |b| < δ ≤ 1 and so |ab| < δ < ε. Since | sin(1/ab)| ≤ 1, we have |ab sin(1/ab)| <
ε, so the function is continuous at (0, 0). �

Many cases are like the ones above. However, there are some interesting subtle
cases that require some more work to understand. I’ll give some examples and their
solutions. If you get stuck on these, feel free to contact me about it.

Example 7. Where is the function

f(x, y) =

{
x√
x2+y2

, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

continuous?

Solution. The function is continuous everywhere except (0, 0).
The interesting thing about this example is that you cannot even “make f con-

tinuous” at (0, 0) by setting it to a certain value. (Can you show this?) �

Example 8. Consider the function f(x, y) = arcsin

(
y√
x2+y2

)
. This function

isn’t defined at (0, 0), and shares the same phenomena as the previous example, in
that you cannot define f(0, 0) in any way to make it continuous. In this case, it’s
because if you define a xn which approaches the origin along a line with angle θ
from the x-axis, then limn→∞ f(xn) = θ!

This shows that we can have strange phenomena in higher dimensions that
doesn’t occur in the case of one real variable. It also emphasize the fact it is a
difficult and subtle problem to establish continuity of a function at a point, since
you have to consider sequences that approach your points from infinitely many di-
rections. It was indeed these kind of problems that motivated mathematicians to
rigorously define continuity via ε-δ arguments and later via topological terminology
like open sets.

5. Appendix: The δ-ε definition of continuity and the open set
definition of continuity are equivalent for Rn.

Proposition 5.1. Let f : Rn → Rm be a function. In the terminology of open
sets, we say that f is continuous if the preimage of every open set is open, that
is, if f−1(U) is open for every open set U ⊂ Rm. This definition is equivalent to
the ε-δ definition of continuous given above.

Proof. Suppose that f−1(U) is open for every open set U ⊂ Rm. Let x ∈ Rn and
ε > 0. Then Bε(f(x)) is an open set in Rm containing f(x). Since f is (open-set)
continuous, V = f−1(Bε(f(x))) is an open set in Rn. Note that V contains x
and so x is an interior point of V . In other words, there exists a δ > 0 such that
Bδ(x) ⊂ V , which implies that f(Bδ(x)) ⊆ Bε(f(x)).

Conversely, suppose that f is (ε-δ-continuous) and U ⊂ Rm is an open set. We
want to show that f−1(U) is open. This is vacuously true if f−1(U) is empty, so
assume that x ∈ f−1(U). Since f(x) ∈ U and U is open, there exists some ε > 0
such that Bε(f(x)) ⊆ U . By (ε-δ) continuity of f , there exists some δ > 0 such
that Bδ(x) ⊆ f−1(U), in other words, x is an interior point of f−1(U). Since this
is true for any x ∈ f−1(U), we conclude that f−1(U) is open, as desired. �
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As an exercise, try to show that the sequence definition of continuity is also
equivalent to the ε-δ definition of continuity and the open set definition of continuity.


