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1. Directional and Partial Derivatives

To begin, we will specialize our study from a general multivariable function
(f : Rn → Rm) to the case of a real-valued multivariable function f : Rn → R.
Such a function is sometimes called a scalar field. This is the simplest interesting
case of a multivariable function, but it allows us to illustrate many of the features
that are also present in a more general setting.

Since there is “calculus” in the title of this class, the first natural question is to
ask is “how do you differentiate such a function”? Intuitively, differentation allows
us to find the instantaneous rate of change as you move in the domain. This is easy
enough in R, since we can only move back and forth on the real line, but as you
saw with limits, in R2 and higher dimensions, there are infinitely many ways to
move! This is why we cannot just take a derivative in multivariable calculus. We
must also choose a direction. This leads us to the following definition.

Definition 1.1. The directional derivative of a function f at a point a along a
unit vector u is defined as

f ′(a; u) := lim
h→0

f(a + hu)− f(a)

h
.

Remark 1.2. You may also see the directional derivative denoted as fu(a).

Warning 1.3. Just like in the one-dimensional case, the limit may not exist. For
instance, suppose that a function is not continuous at the point.

Warning 1.4. It is important that the vector u is normalized, or else you will get
the wrong number.

Looking at the definition of directional derivative, we see that this is just a
natural generalization of the one-dimensional derivative you know and love. Often
the u that you choose will be the directions of your basis, such as e1 = (1, 0) and
e2 = (0, 1) in R2. We use these so much that we give them a special name.

Definition 1.5. The partial derivative of f(x1, . . . , xn) at a with respect to xk
is given by

∂f

∂xk
(a) := f ′(a, ek).

Remark 1.6. You can find more about the partial derivative on Apostol page 254.

Note that ∂f
∂xk

is again a multivariate function, so we can differentiate this with

respect to another variable x` to get a function ∂
∂x`

∂f
∂xk

= ∂2f
∂x`∂xk

, which is called a
mixed partial derivative.
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Warning 1.7. Note that the order matters! It is not always true that the equality

∂2f

∂x`∂xk
=

∂2f

∂xk∂x`
holds. However, in many “nice” contexts, this equality does hold. For instance, it is
a basic theorem that if all partial derivatives exist and are continuous (important!)
on a domain D, then (mixed) partial derivatives commute on that domain.

1.1. How to calculate partial derivatives. In practice, computing partial deriva-
tives is very easy. For instance, to compute ∂f/∂xk, just think of everything except
for the variable xk as constant and differentiate just like you would for one variable.

Warning 1.8. If you want to do this one the homework, however, you need to cite
Theorem 8.3 in Apostol or give an explanation of why this technique is valid. (This
is worth thinking about, if only to make sure you understand everything that’s been
presented so far.)

Let’s start with a simple example.

Example 1. Let’s compute the partial derivatives for the function f(x, y) = x2 −
2xy + y2. Let’s first do it the long way—no shortcuts—along x, just from the
definitions.

We have
∂f

∂x
= f ′((x, y); (1, 0))

= lim
h→0

((x+ h)2 − 2(x+ h)y + y2)− (x2 − 2x+ y2)

h

= lim
h→0

(x+ h)2 − x2

h
+ lim

h→0

2(x+ h)y − 2xy

h
= 2x− 2y,

where the last step is from the usual power rule for a one-dimensional derivative.
Note in particular ∂f

∂x is a function in two variables, even though we have not
explicitly written it as such.

Note that f is symmetric with respect to x and y, so by our shortcut technique,
we easily compute

∂f

∂y
= 2y − 2x.

Remark 1.9. We should probably write ∂f
∂x (x, y), but this notation is cumbersome,

especially once you work in more than two variables. Just make sure that you under
what the shorthand ∂f

∂x stands for.

2. Total Derivatives

While taking directional derivatives is tremendously useful, one nice thing about
the derivative in one variable is that it captured all of the information about the
instantaneous rate of change in one simple object. However, there are infinitely
many directions along a multivariable function. Is there any hope of doing getting
such an object in multivariable calculus? Is there a way to put this seemingly
infinite amount of information into one convenient package?

It turns out that the answer is yes! We just need to take a pinch of Ma 1a, a
dash of Ma 1b, and stir it all in a big pot of Ma 1c to get the following object.
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Definition 2.1. The total derivative of f at a is a linear transformation Ta such
that for all v in some ball about a, we have

f(a + v) = f(a) + Ta + ||v||E(a,v)

where E is a function such that E(a,v)→ 0 as ||v|| → 0.

Warning 2.2. Once again, such a thing might not exist if your function f is not
sufficiently “nice.”

Let’s step back and try and parse this definition. If you look carefully, you
just see an shadow of the one-dimensional derivative in disguise. Essentially, our
definition says that if we consider (f(a + v)− f(a))/||v|| as ||v|| → 0, there exists
a limit, which is the linear transformation Ta.

The way I like to think about the total derivative Ta is that it is machine that eats
vectors and spits out a number that indicates how f is changing in the direction
of that vector. It’s like a guru that knows everything about how a function f
changes. If it can be found by a directional derivative, it’s something that Swami
Total Derivative already knows.

It’s nice to know that such a thing can exist. In general, we know that a function
can have directional derivatives in certain directions, but not in other directions.
One useful consequence is that if a total derivative exists at a point, all directional
derivatives also exist at that point. Indeed, for a direction u, we have

f ′(a; u) = Ta(u).

3. Common Pitfalls

We’ve developed a lot of machinery thus far. It can be a lot to absorb all at
once if it’s the first time you’ve seen it, but it will all become second nature once
you get more experience with it. However, there are some common errors and
misconceptions in learning this stuff that I would like to address.

• A function can have all its partial derivatives, but not be differentiable!
Consider the function

f(x, y) =

{
0, xy = 0
1
xy , otherwise.

It doesn’t have most directional derivatives, but its partial derivatives do
exist!

• A function can have all its directional derivatives, but not be continuous!
See Apostol, page 257 for an example. Note that this is different from the
one-dimensional case, in which differentiability at a point applies continuity
at a point. (Recall the proof of this. What fails in higher dimensions?)

• A function can be differentiable, but not have continuous partial derivatives!
You will see this on your homework.

The general rule is never assume anything is true unless you have a
theorem, result, or proof to back it up. This is part of the reason why we
are tough on you and want you to explicitly cite theorems and results on your
homework. Many things that seem “obvious” or “clear” to you may not even be
true at all!
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4. The Gradient

Here comes the first of the three grand objects in multivariable calculus. (The
others are the divergence and the curl, which you will see later. It’s not too far-
fetched of a statement to say that multivariable calculus is the study of div, grad,
and curl.)

Definition 4.1. The gradient of a function f : Rn → R at a point a is defined
as

∇f(a) =

(
∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)

)
.

In particular, note that if f is differentiable, then the gradient of f is precisely the
total derivative of f , written with respect to the standard basis.

Remark 4.2. Think of the gradient as a function from the set of n-variable functions
to the set of n-vectors. You feed it a function, it spits out a vector. You can feed
this vector a point to get information about partial derivatives in every direction
at that point.

The gradient gives us access to many useful techniques, the first of which is the
following useful result.

4.1. The best way to compute directional derivatives. If f is differentiable,
then f ′(a; u) = Ta(u). Furthermore, we noted that Ta expressed with respect to
the standard basis {ei} is precisely ∇f(a). Therefore, we see that

f ′(a; u) = ∇f(a) · u,

where the · is the dot product, which is just multiplication taken coordinate-wise
for the vectors.

5. When is a function differentiable?

We have seen that we have lots of nice properties that only work when a function
is differentiable. Therefore, it is very important to have a way to tell if a function
is differentiable. One of the most useful results for doing this is Apostol Theorem
8.7.

Theorem 5.1. If all of the partial derivatives of f exist in some ball around a and
the partials are continuous at a, then f is differentiable at a.

Example 2. The function f(x, y) = − cos(xy) is differentiable at (0, 0).

By Theorem 8.3, we can find the partial derivatives by taking the derivative
with respect to one variable and assuming that the other variables are constant.
We compute

∂f

∂x
= y sin(xy),

∂f

∂y
= x sin(xy).

By various theorems from last week, we know that these partial derivatives exist and
are continuous at (0, 0). (Show this!) Therefore, by Theorem 8.7, f is differentiable
at (0, 0).

Example 3. This is a “lite” version of your homework problem. Show that
f(x, y) = x2 + y is differentiable at (0, 0).



MA 1C RECITATION 04/12/12 5

I won’t solve this in the slickest way, because I want to give you an idea of how
to argue for one of your homework problems whose setting isn’t as simple as this
one.

We want to find a linear transformation T = T(0,0) such that

(∗) f(v) = 0 + T (v) + ||v||E((0, 0), v)

for all v such that ||v|| < ε—where we can control ε > 0—and such that E(v) :=
E((0, 0), v)→ 0 as v → (0, 0). This is difficult in general, so we want to use Theorem
8.7, which reduces our problem to just finding some T . If the partial derivatives
exist, they are a good guess for what a T might look like. (This is because if they
all exist and are continuous at (0, 0), then T is just the gradient.) Even better, if
you can draw the function (e.g. if it’s in a plane), then the T (v) above is just the
tangent plane, which gives you an even better idea of what the answer might be.

We can indeed draw our function in our case, and it seems like T = (0, 1) might
be something that works. (How’d I find this? I sort of cheated. I used the gradient
and evaluated at (0, 0).) Let’s test it out. Substituting T = (0, 1) into the equation
(∗), we obtain

v21 + v2 = (0, 1) · (v1, v2) +
√
v21 + v22E(v),

and with some algebra, we find that

E(v) =
v21√
v21 + v22

.

Okay, so we have a plausible argument and a candidate solution. Let’s prove that
these do work.

We observe that this value of T does indeed satisfy the argument in a ball around
(0, 0) and that E is well-defined in such a ball. (Check!) It remains to show that
E(v) → 0 as v → (0, 0). Let ε > 0 and set δ = ε. Therefore, if ||v|| < δ, then
|v1| < δ = ε. We have

|E(v)| =

∣∣∣∣∣ v21√
v21 + v22

∣∣∣∣∣ ≤ |v1| < ε,

proving our claim.

Example 4. Find a differentiable function whose maximal directional derivative
at (3, 5) is equal to 1 in the direction (1, 0).

This kind of problem, which you also have on your homework, is a preview of an
important concept which we will study later.

Recall that the directional derivative in the direction (1, 0) is just ∇f(3, 5)·(1, 0).
Therefore, we need to find a function f such that

(1)
∂f

∂x
(3, 5) = 1.

Now we need to find something that satisfies this “maximal” condition. Now,
for (1, 0) to be the direction of maximal increase, (1, 0) must be the vector that
maximizes ∇f(3, 5) · v. However, recall the following property of the dot product:

|a · b| = ||a||||b|| cos(θ),
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where θ is the angle between the vectors. Since cos(θ) is maximized when cos(θ) = 1,
we note that the dot product is maximized when θ = 0, that is, when a and b lie
on the same line. Thus, if we find a function such that

(2) ∇f(3, 5) = (1, 0)

we are done.
There are many functions that satisfy criteria (1) and (2). For instance, f(x, y) =

(x3/3− 5x) + (y − 5)2 is one possible solution.


