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1. Integration on Surfaces

To understand the title of this section, we need to understand two things: (1)
what “integration” means on a surface and (2) what a “surface” is, mathematically
speaking. We’ll start by answer the first question, which is less fundamental, but
easier to approach intuitively, so whenever I say “surface” for now, just imagine
your favorite surface in R3 that you have seen before, like a sphere or a torus.

Suppose we have a surface S ⊂ R3 and some function f : R3 → R. How can we
define the integral of f over S?

The reason that we’re talking about this stuff now, immediately after the change
of variables section, is that change of variables is the right the way to look at our
situation.

Here’s one way to look at it. Suppose that S is parametrized by some function
φ : R→ S, with R ⊂ R2. Then one natural way to define the integral of f over S
is to say that it is the integral of f ◦ φ over R, where we need to compensate for
how φ “stretches” the area. Namely, we have the following notion of integral.

Definition 1.1. For a surface S ⊂ R3 parametrized by some function φ(x, y) :
R → S with R ⊂ R2 and some function f : R3 → R, we define the integral of f
over S as ∫∫

S

f dS =

∫∫
R

f(φ(x, y)) ·
∣∣∣∣∣∣∣∣∂φ∂x × ∂φ

∂y

∣∣∣∣∣∣∣∣ dx dy.
Namely, we see that

∣∣∣∣∣∣∂φ∂x × ∂φ
∂y

∣∣∣∣∣∣ accounts for the distortion of space. If you think

about what this expression means, it actually makes a lot of sense. At the point
(x, y), we shift space by ∂φ

∂x along x and by ∂φ
∂y along y, so it’s distorting the area

by the magnitude of the cross-product of those two vectors at that point.

2. First Application: Surface Area of a Sphere

Have you ever wondered how mathematicians came up with all of those annoying
formulas that you had to memorize for standardized tests? Probably not. But let’s
use our new technology to rediscover a well-known formula from calculus.

Example 1. What is the surface area of a sphere S2 (in R3)?

Solution. Let’s parametrize the sphere with spherical coordinates of radius 1, that
is,

f(θ, φ) = (sinφ cos θ, sinφ sin θ, cosφ),

so f([0, 2π]× [0, π]) = S2. Notice that we don’t have a one-to-one correspondence
between [0, 2π] × [0, π] and S2, accurate, since we have some overlapping, but it
turns out that this is content zero, so it doesn’t affect our integral calculation.

Date: May 31, 2012.

1



2 MA 1C RECITATION 05/31/12

Next, we calculate∣∣∣∣∣∣∣∣∂f∂θ × ∂f

∂φ

∣∣∣∣∣∣∣∣ = ||(− sinφ sin θ, sinφ cos θ, 0)× (cosφ cos θ, cosφ sin θ,− sinφ)||

= ||(− sin2 φ cos θ,− sin2 φ sin θ,− cosφ sinφ)||

= | sinφ|
√

sin2 φ sin2 θ + sin2 φ cos2 θ + cos2 φ

= | sinφ|.
Thus, we compute ∫ π

0

∫ 2π

0

| sinφ| dθ dφ = 2π[− cosφ]

∣∣∣∣π
0

= 4π,

which gives us the surface area of the 2-sphere, as desired. �

2.1. Why does this technique always work for surfaces? The real question
here is “What is a surface”? The reason that this way of defining an integral works
for surfaces is because when we are talking about surfaces in R3, we are actually
talking about two-dimensional manifolds in embedded in R3. I have mentioned
manifolds a couple of times beforehand in recitation essentially as a lead into what
we’re trying to do here. (The amazing thing is that manifolds make our intuition
for, say, surfaces, work in arbitrary dimensions, with the exact same formalism!)
Don’t be scared when you hear the word manifold, even though you’re not expected
to know the definition of it, it’s just a mathematically precise way to describe
something that occurs very naturally.

A 2-manifold (the shorthand for 2-dimensional manifold), or surface, is a
geometric object that “locally looks like R2.” Inituitively, this means that if you
“zoom in” any part of a surface, you cannot tell whether you’re on the surface in
question or R2.

Examples: sphere, R2, torus, klein bottle (try embedding in 4-dimensions!),
open set in R2, open set of a surface, closed set of a surface (technically a manifold
with boundary).

Non-examples: cone, real line (a 1-manifold, but not a 2-manifold), crossed lines
(not a manifold, not even 1-dimensional).

Actually, one of the first major theorems you learn in topology is the classifi-
cation of “closed” (i.e. compact and boundaryless) 2-manifolds: it says that all
2-manifolds, up to topological equivalence (e.g. via stretching or contracting with-
out sharp corners or folding), are just the sphere, a torus, 2-holed torus, or other
n-holed torus. In other words, the only thing preserved topologically for closed
2-manifolds is the number of “holes” or “handles.” One cool way to prove this is
via an intuitive diagrammatic example. [Show torus example.]

To integrate, on say, cones, which occur naturally in many applications, mathe-
maticians usually use a technique called “stratification” to allow for a well-defined
notion of integration, but such things are beyond the scope of this class.

3. Interlude/Warning: Integrating 2-forms

On your homework, you’re asked to do some integration where you’re integrating
along, say dy ∧ dz instead of dy dz. Note that integration by these two things are
NOT the same. This is a very common error. In the first, you are integrating a
“2-form” and in the second, you are integrating two “1-forms.”
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However, don’t be scared! To do the homework, all you need to know is to recall
that

∂(X,Y )

∂(u, v)
:= det

[
∂X
∂u

∂Y
∂u

∂X
∂v

∂Y
∂v .

]
(Important! This is NOT the Jacobian. Do not confuse the two.) Then we define∫∫

S

P dy ∧ dz :=

∫∫
T

P (φ(u, v))
∂(Y, Z)

∂(u, v)
du dv.

Therefore, if you see an integral with 2-forms like dx∧dy, all you need to do is break
it up into summands and use the above formulation to tell you how to compute the
integral.

The reason that these things are mentioned, is that integrating general n-forms
is an essential part of integration on manifolds and the way that modern science
views integration.

If there is interest, I can tell you more about why these wedges works and the
formalism behind them. However, this is probably all you need to do the homework
problems.

4. Stokes’ Theorem

This is essentially Green’s theorem for surfaces. (Or more accurately, Green’s
theorem is just a kind of Stokes’ theorem.)

Theorem 4.1 (Stokes’ Theorem). Suppose that S is a bounded surface with bound-
ary given by a positively oriented (i.e. counterclockwise) curve C and F : R3 → R3

is a continuous differentiable function. Then∫∫
S

((∇× F ) · n) dS =

∫
C

F · ds

where n denotes the unit normal vector at any point on S.

Remark 4.2. If we have a parametrization φ of our surface S, we can explicitly
write our normal vector n as

n =

∂φ
∂x ×

∂φ
∂y

||∂φ∂x ×
∂φ
∂y ||

.

We want to use Stokes’ theorem in essentially the same situations as Green’s
theorem. However, it tends to be more useful in one direction than the other.

• Bad curve. Turning integrals over bad curves into an nicer one of curls of
functions over surfaces.

• Bad function. Turn integrals of bad functions over some curve into integrals
of curves over some region.

• We can also go backwards, but it is generally hard to figure out whether
an integrand is of the form (∇× f) · n over a surface. Don’t try to do this
unless you’re really stuck or the problem gives you the function explicitly.

Example 2. If F (x, y, z) = (−xy2, x2y, z) and S is the sphere cap {(x, y, z) :
x2 + y2 + z2 = 25, z ≥ 4}, find the integral of (∇× F ) · n over S.
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Solution. We could try and integrate over the surface itself, but it’s a pretty tricky
computation, and you will almost surely make an error somewhere. However, we
see that the boundary is nice, so let’s try and apply Stokes’ theorem to integrate
along the boundary instead! Namely, S has boundary

∂S = {(x, y, z) : x2 + y2 + z2 = 25, z = 4} = {(x, y, z) : x2 + y2 = 32, z = 4},
which we can parametrize in the counterclockwise direction by the curve γ(θ) =
(3 cos(θ), 3 sin(θ), 4). Therefore, by Stokes’ theorem, we have∫∫

S

(∇× F ) · n dS =

∫
C

F dC

=

∫ 2π

0

(−27 cos(θ) sin2(θ), 27 cos2(θ) sin(θ), 4) · (−3 sin(θ), 3 cos(θ), 0) dθ

=

∫ 2π

0

81 cos(θ) sin3(θ) + 81 cos3(θ) sin(θ) dθ

=

∫ 2π

0

81 cos(θ) sin(θ)(sin2(θ) + cos2(θ)) dθ

=

∫ 2π

0

81 cos(θ) sin(θ)

=

∫ 2π

0

81 sin(2θ)

2
dθ

= 0.

�

Example 3. Find the line integral of F (x, y, z) = (y2, x2, xz) around the circle of
C radius 1 in the xy-plane, oriented counterclockwise from above.

Solution. We note that curl(F ) = (0, z, 2y − 2x). By Stokes’ theorem, our line
integral is equal to the integral of ∇ × F over any surface with C as a boundary.
(Isn’t this strange? But it is true!) Let’s make this easy for ourselves and choose
the disk in the xy-plane, parametrized by polar coordinates. We then compute∫
C

F · ds =

∫ 1

0

∫ 2π

0

(∇× F )(φ(r, θ)) · (∂r × ∂θ) dθ dr

=

∫ 1

0

∫ 2π

0

(0, 0, 2r(sin θ − cos θ)) · ((cos θ, sin θ, 0)× (−r sin θ, r cos θ, 0)) dθ dr

=

∫ 1

0

∫ 2π

0

(0, 0, 2r(sin θ − cos θ)) · (0, 0, r) dθ dr

=

∫ 1

0

∫ 2π

0

2r2(sin θ − cos θ) dθ dr

=

∫ 1

0

(−2r2[sin θ + cos θ]

∣∣∣∣2π
0

dr

=

∫ 1

0

0 dr

= 0.
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