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1. Warmup: Another way to think about the gradient

Example 1. Find a differentiable function whose maximal directional derivative
at (3, 5) is equal to 1 in the direction (1, 0).

This kind of problem, which you also have on your homework, is a preview of an
important concept which we will study later.

Recall that the directional derivative in the direction (1, 0) is just ∇f(3, 5)·(1, 0).
Therefore, we need to find a function f such that

(1)
∂f

∂x
(3, 5) = 1.

Now we need to find something that satisfies this “maximal” condition. Now,
for (1, 0) to be the direction of maximal increase, (1, 0) must be the vector that
maximizes ∇f(3, 5) · v. However, recall the following property of the dot product:

|a · b| = ||a||||b|| cos(θ),

where θ is the angle between the vectors. Since cos(θ) is maximized when cos(θ) = 1,
we note that the dot product is maximized when θ = 0, that is, when a and b lie
on the same line. Thus, if we find a function such that

(2) ∇f(3, 5) = (1, 0)

we are done.
There are many functions that satisfy criteria (1) and (2). For instance, f(x, y) =

(x3/3− 5x) + (y − 5)2 is one possible solution.

2. Critical Points

We now return to the scalar field (f : Rn → R) case. Last time we saw that if
a point is a local extremum of a scalar function f , then the gradient of f is zero at
that point.

However, the converse statement is not true. Consider f(x, y) = x2 − y2 at the
point (0, 0). Since we are always interested in finding extrema, even if we have to
search for them among a given set of points, we give these points a name. A point
where the gradient of f is zero is called a critical point (or stationary point) of
f .

Why are these sometimes called “stationary points”? I think the definition
makes the most sense if you think about the problem physically. Say f measures
the temperature in a certain Rn space. Recalling our reasoning on the last problem
from last week, we saw that the gradient points in the direction of greatest change,
in other words, it will always point to the locally “hottest point.” Suppose you
take the gradient of a scalar field at point p, then move a tiny bit in the direction
the gradient is pointing at p, then evaluate the gradient and repeat the process.
If the temperature function is bounded, then by following this process, you will
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eventually will arrive at the “hottest point,” and since you are at the hottest point,
no direction will point to a hotter point, and so the gradient will be zero, and you
will remain stationary.

This thinking is slightly misleading in general, since it applies to “coldest points”
as well, but it gives you an idea behind the terminology. Actually, for functions
f(x, y) in two variables, the stationary points correspond to peaks, pits, and saddle
points. In Math 2a, you will study how points converges to these stationary points,
which is a fascinating subject in itself.

To study critical points, we need to look at higher derivatives, much like how
we studied maxima in the one-variable case by looking at the second-derivatives at
that point. To do this, we introduce the following important object.

Definition 2.1. The Hessian matrix of a scalar field f : Rn → R is defined to be

H(x) = [Dijf(x)]ni,j=1

Remark 2.2. Note that

H(f)(x) = J(∇f)(x).

In particular, the Hessian matrix is symmetric, so there exists a basis of Rn

consisting of the eigenvectors of H.
Observe that if x is an eigenvector of H, then the sign of the derivative in the

direction of x is xH(a)xT . Therefore, the sign of the derivative of f in the various
directions at a corresponds with the signs of the eigenvalues of H. In particular,
we have three cases.

• (H is negative definite) If all the eigenvalues of H are negative, then f has
a maximum.

• (H is positive definite) If all the eigenvalues of H are positive, then f has a
minimum.

• If there are eigenvalues of both signs, then f has a saddle point.

Remark 2.3. Note that this is just a generalization of the second-derivative criteria
for extrema in the one-variable case, i.e. if the function is concave down, then
we have a local maximum; if concave up, then we have a local minimum. We
just have an additional ambiguity here with the saddle point since we are in the
multiple-variable setting.

Example 2. Find and classify the critical points of f(x, y) = x2 + y2.

Solution. We have ∇f = (2x, 2y). Therefore, the only critical point of f is (0, 0).
Computing the Hessian, we find that

Hf =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]
=

[
2 0
0 2

]
.

Therefore, the eigenvalues of Hf are 2 and 2, so Hf is positive definite, implying
that (0, 0) is a local minimum. �

Critical points are subtle objects. They may not always behave like you’d imag-
ine.

For instance, f(x, y, z) = sin(x2 + y2 + z2) is an example that shows that critical
points don’t need to be isolated, since every point in the 3-sphere is a critical point
of f . (Work it out!)



MA 1C RECITATION 04/17/13 3

A function may also have no critical points whatsoever. Consider the (slightly

modified) Gaussian function f(x, y) =
∫ y

x
e−t2 dt. Then ∇f(x, y) = (−e−x2

, e−y2

),
which is never zero.

Warning 2.4. To find extrema for a function restricted to a region, you must check
the critical points and the boundary points, just like in the single-variable case. This
is because if a function is defined on a region, you may have global extrema that
are not critical points.

2.1. How to find extrema of multivariable functions.

(a) Find and classify all critical points in the defined region and classify them
as local/relative extrema or saddle points by looking at the Hessian at that
point.

(b) Find the extrema on the boundary by evaluating the function at the bound-
ary points, and see if any of these are global extrema (larger or smaller than
your local extrema found above). Since the gradient may not be zero here,
you don’t have to worry about finding relative extrema or saddle points.

(c) Neatly and clearly describe all the local extrema, the saddles, and the global
extrema on the interior of the region defined, as well as the global extrema
that may lie on the boundary.

3. Lagrange Multipliers

Lagrange multipliers are a method to optimize a function f(x) under some con-
straint g(x) = c for some constant c. It is a useful technique that is almost always
faster doing things the “long way,” that is, by finding the critical points, seeing
which ones fit the constraint, and seeing which one is the maximum or minimum.

The reason why Lagrange multipliers work is a pretty clever application of the
gradient and it’s easy and satisfying to see how geometric these results are.

I’ll state a commonly used version of the Lagrange multiplier theorem. More
general versions are available, but I find that this relatively simple version helps
illustrate most of the features of Lagrange multipliers.

Theorem 3.1. Suppose that the constraint equation g(x) = c is nonsingular, that
is, the function g is differentiable and ∇g 6= 0 at all points in the set {g = c}. If x
is a maximizing (or minimizing) input, then x also satisfies the equation

(∇f)(x) = λ(∇g)(x)

for some scalar λ.

In other words, for, say, the three-dimensional case, we can solve the system of
equations

g(x, y, z) = c

∂f

∂x
= λ

∂g

∂x
∂f

∂y
= λ

∂g

∂y

∂f

∂z
= λ

∂g

∂z
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to find a list of f -inputs to check (“checkpoints”). Then we can plug these into f
to get a set of f -outputs, and one of these checkpoints will be the maximum (or
minimum) if it exists.

3.1. Algebra Tips for Lagrange Multipliers.

• Solving for λ and equating the results is usually the fastest way to
start, but sometimes a clever trick will work faster.

• Be careful when you divide by 0! If you solve this (or any system of
equations), where you have to divide by an expression, it is critical that
you consider a separate case where that expression is zero. For instance,
the equation AB = AC implies that B = C or A = 0 (or both). You will
miss check points if you don’t do this!

• Finding “too many” checkpoints is not a problem, as long as they all
satisfy the constraint g = c. When we check the outputs, we can quickly
rule out the points that are not extrema. However, you must not miss any
potential checkpoints!

3.2. Presentation Tips.

• Make a list of (or draw a box around) all of your “checkpoints”
once you complete your problem. In other words, make it absolutely clear
all the f -inputs that you checked, along with their outputs. Lagrange mul-
tiplier calculation can get messy quickly, so don’t lose points unnecessarily!

• Clearly indicate the cases considered (e.g. by underlining them) to
make sure that the grader knows which cases you considered.

Example 3. What is maximum and minimum of f(x, y) = x2 + y3 given the
constraint g(x, y) = x4 + y6 = 2.

Solution. Check that g(x, y) = 2 is a nonsingular constraint. By applying the
method of Lagrange multipliers, we have the system of equations

x4 + y6 = 2 (∗)
2x = λ4x3

3y2 = λ6y5

We want to divide by x and by y to solve for λ, so we need to consider the cases
where x or y is zero.

Case x = 0: In this case, (∗) tells us that y6 = 2 and y = ± 6
√

2, so we have the

checkpoints (0,± 6
√

2).

Case y = 0: Here, (∗) says x4 = 2, so x = ± 4
√

2 and so we have checkpoints

(± 4
√

2, 0).
Case x 6= 0 and y 6= 0: Since x and y are both nonzero, we can divide by x and

y to see that λ = 1/(2x2) = 1/(2y3), so x2 = y3. Then (∗) says that x4 + x4 = 2,
so x = ±1 and y3 = x2 = 1, so we have checkpoints (±1, 1).

Now that we have all the checkpoints, let’s check their outputs under f :

f(0,
6
√

2) =
√

2

f(0,− 6
√

2) = −
√

2 (min)

f(± 4
√

2, 0) =
√

2

f(±1, 1) = 2 (max).
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Remark 3.2. Observe that if we didn’t consider the cases of x = 0 and y = 0
separately, we would not have found the minimum.

We could also have solved the third case differently. When x2 = 1, we could have
found y by solving x4 + y6 = 2, so we’d get “extra” checkpoints (±1,−1). These
don’t satisfy the full Lagrange system of equations because x2 6= y3, but since they
do satisfy the constraint equation, the theorem says that the checking process will
show that they are not extrema. Moral: Having extra checkpoints is OK, as long
as they satisfy the original constraint and that you check them at the end.

We could also have solved the example differently. For instance, if we divided
by x − 1, then we need to check the case where x = 1. This also applies to more
general situations. For example, if we divide by y − z3, then we need to separately
check the case when y = z3.


