MA 1C RECITATION 05/09/13

1. Something Strange

As you move onto higher math, you often run into something called the "curse of dimensionality," which, roughly speaking, is the idea that your intuition for how things work in the 2 or 3 dimension fails horribly in higher dimensions. This is a recurring theme for things like 4 -dimensional spaces and whatnot that you will see in higher geometry/topology and physics, but it is also a prevalent in fields like data mining, where you often think of data obeying certain parameters as lying in some n-dimensional space.

We'll get our first taste of this in our recitation today. If you can do these problems without any issue, you should be in good shape for the homework.
(a) Show that the five-dimensional unit ball $B_{5}=\left\{\mathbf{x} \in \mathbf{R}^{5}:\|x\| \leq 1\right\}$ has volume $8 \pi^{2} / 15$
(b) Show that this volume is the largest volume attained by any n-dimensional unit sphere. In other words, for any $B_{n}=\left\{\mathbf{x} \in \mathbf{R}^{n}:\|x\| \leq 1\right\}$, we have $\operatorname{vol}\left(B_{n}\right)<\operatorname{vol}\left(B_{5}\right)$ for $n \neq 5$.
Thus, we see that 5 -dimension sphere take up "more space" than any of the other spheres in any other dimension! Our goal today is to prove this result by using the tools that we have developed so far.

2. Change of Variables

Like most things in multivariable calculus, it is best to understand what happens in the single variable case first. Recall the following result fro Math 1a.

Theorem 2.1 (Change of variables, single variable case). Suppose that f is a continuous function over the interval $(g(a), g(b))$ and that g is a C^{1} map from (a, b) to $(g(a), g(b))$. Then we have

$$
\int_{g(a)}^{g(b)} f(x) d x=\int_{a}^{b} f(g(x)) \cdot g^{\prime}(x) d x
$$

Let's break this down a little. We see that the integral of f over the $(g(a), g(b))$ is the same as the integral of $f \circ g$ over the interval (a, b), except that we need to correct for how g "shifts the space" going into f. In single variables, we can represent this change via differential forms. Namely, we integrate by $d x$ on the left, representing the change in x, and on the right, we integrate with respect to $d(g(x))=g^{\prime}(x) d x$.

We want to try and do something similar for multiple variables. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a scalar field and let $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a differentiable map. But how do we get a number that represent how a function "shifts space"? Well, we know that the the Jacobian $D(g(\mathbf{x}))$ measures small changes in the vector \mathbf{x}, and we recall from Math 1 b that $\operatorname{det}(D(g(\mathbf{x}))$ measures the volume of the unit cube under the map $D(g(\mathbf{x}))$.

[^0]Thus, this quantity, the determinant of the Jacobian of g, tells us how g is shifting the space around \mathbf{x} ! Indeed, we have the following result.

Theorem 2.2 (Multivariable Change of Variables). Suppose that R is an open region in \boldsymbol{R}^{n}, that g is a C^{1} map $\boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ on an open neighborhood of R, and that f is a continuous function on an open neighborhood of the region $g(R)$. Then

$$
\int_{g(R)} f(\boldsymbol{x}) d V=\int_{R} f(g(\boldsymbol{x})) \cdot \operatorname{det} D(g(\boldsymbol{x})) d V
$$

3. Common Applications of Change of Variables

There are three common variable changes that we do in multivariable calculus: polar coordinates, cylindrical coordinates, and spherical coordinates.

Theorem 3.1 (Polar Change of Variables). Let $\gamma:[0, \infty) \times[0,2 \pi)$ be the polar coordinate map $(r, \theta) \mapsto(r \cos (\theta), r \sin (\theta))$. Note that γ is C^{∞}. Then $D(\gamma(r, \theta))=$ $\left[\begin{array}{cc}\cos (\theta) & -r \sin (\theta) \\ \sin (\theta) & r \cos (\theta)\end{array}\right]$, so $\operatorname{det}(D(\gamma(r, \theta)))=r$, we so

$$
\int_{\gamma(R)} f(x, y) d V=\int_{R} f(r \cos (\theta), r \sin (\theta)) \cdot r d V
$$

for any region R in \boldsymbol{R}^{2} and any continuous function f on an open neighborhood of R.

In other words, if we have a region R described by polar coordinates, we can say that the integral of f over $\gamma(R)$ is just the integral of $r \cdot f(r \cos (\theta), r \sin (\theta))$ over this region interpreted in Euclidean coordinates. For example, suppose that R was the unit disk, which we can express using our polar coordinates map as $\gamma([0,1] \times[0,2 \pi))$. Then, change of variables tells us that the integral of f over the unit disk is just the integral of $r \cdot f(r \cos (\theta), r \sin (\theta))$ over the Euclidean coordinate rectangle $[0,1] \times[0,2 \pi)$.

We can similarly describe cylindrical coordinates.
Theorem 3.2 (Cylindrical Change of Variables). Let $\gamma:[0, \infty) \times[0 \times 2 \pi) \times \boldsymbol{R}$ be the cylindrical coordinate map $(r, \theta, z) \mapsto(r \cos (\theta), r \sin (\theta), z)$. Now, γ is C^{∞} and

$$
D(\gamma(r, \theta))=\left[\begin{array}{ccc}
\cos (\theta) & -r \sin (\theta) & 0 \\
\sin (\theta) & r \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

so $\operatorname{det}(D(\gamma(r, \theta)))=r$ and so

$$
\int_{\gamma(R)} f(x, y) d V=\int_{R} f(r \cos (\theta), r \sin (\theta), z) \cdot r d V
$$

for any region R in \boldsymbol{R}^{3} and any continuous function f on an open neighborhood of R.

Spherical coordinates are just a slightly complicated twist on this general theme.
Theorem 3.3 (Spherical Change of Variables). Let $\gamma:[0, \infty) \times[0, \pi) \times[0,2 \pi)$ be the cylindrical coordinate map $(r, \phi, \theta) \mapsto(r \cos (\phi), r \sin (\phi) \cos (\theta), r \sin (\phi) \sin (\theta))$.

Now γ is C^{∞} and

$$
D(\gamma(r, \theta))=\left[\begin{array}{ccc}
\cos (\phi) & -r \sin (\phi) & 0 \\
\sin (\phi) \cos (\theta) & r \cos (\phi) \cos (\theta) & -r \sin (\phi) \sin (\theta) \\
\sin (\phi) \sin (\theta) & r \cos (\phi) \sin (\theta) & r \sin (\phi) \cos (\theta)
\end{array}\right]
$$

so $\operatorname{det}(D(\gamma(r, \theta)))=r^{2} \sin (\phi)$ and we have

$$
\int_{\gamma(R)} f(x, y) d V=\int_{R} f(r \cos (\phi), r \sin (\phi) \cos (\theta), r \sin (\phi) \sin (\theta)) \cdot r^{2} \sin (\phi) d V
$$

for any region R in \boldsymbol{R}^{3} and any continuous function f on an open neighborhood of R.

Other common coordinate transformations. These are a bit simpler, so I will omit the details.

- Translations: $(x, y, z) \mapsto\left(x+c_{1}, y+c_{2}, z+c_{3}\right)$. The determinant of the Jacobian of such maps is 1 . This is pretty obvious, but I state it for completeness.
- Scalings: e.g $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}\right)$. The determinant of the Jacobian of such maps is the product of the scaling constants, that is, $\lambda_{1} \cdots \lambda_{n}$.
- Various composition of these maps. By the chain rule, we know that the determinant of the Jacobian of the composition is just the product of the determinant of the Jacobians of the individual maps.
These things are pretty routine and straightforward. The only difficult part is deciding which coordinate change admits the simplest integral. To see this, it's probably best to work through some examples.

4. Examples

Example 1. Find the area in \mathbf{R}^{2} contained inside the ellipse

$$
E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

using change of variables.
Solution. We want to integrate 1 over the region R contained inside the ellipse. To see this, note that R is the image of the unit disk D under the scaling map $\gamma(x, y)=(a x, b y)$. Therefore, by an application of change of variables, we have

$$
\int_{\gamma(D)} 1 d V=\int_{D} 1 \cdot \operatorname{det}\left[\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right] d V=\int_{D} a b d V
$$

Now, by using the polar coordinates for the unit disk D, we describe D as the image of the rectangle $[0,1] \times[0,2 \pi]$ under the map $\alpha(r, \theta) \mapsto(r \cos (\theta), r \sin (\theta))$, we can apply change of variables again to get

$$
\int_{\gamma(D)} 1 d V=\int_{[0,1] \times[0,2 \pi]} 1 \cdot \operatorname{det}(D \alpha) d V=\int_{0}^{1} \int_{0}^{2 \pi} a b \cdot r d \theta d r=\pi a b .
$$

Thus, the area of R is $\pi a b$.
Remark 4.1. You can also solve this without using a change of variables. Try it out!

Example 2. Find the area enclosed by the astroid curve $\left\{(x, y): x^{2 / 3}+y^{2 / 3}=1\right\}$.

Solution. The last problem was fairly simple, and you may prefer to not use change of variables to solve it. However, we'll see that in this case, the technique will give us a slick solution.

From looking at the graph of this function, we might try to use polar coordinates, but if you do that, you will run into problems. Instead, based on the fact that we used polar coordinates $(\cos (\theta), \sin (\theta))$ to describe the points on the unit circle $x^{2}+y^{2}=1$, we want to try and describe our equation via the parametrization $\left(\cos ^{3}(\theta), \sin ^{3}(\theta)\right)$. Thus, we can express the region R contained within the curve as the image of the rectangle $[0,1] \times[0,2 \pi]$ under the map

$$
\gamma(r, \theta)=\left(r \cos ^{3}(\theta), r \sin ^{3}(\theta)\right)
$$

Thus, by using change of variables with this map, we have

$$
\begin{aligned}
\int_{R} 1 d V & =\int_{[0,1] \times[0,2 \pi]} 1 \cdot \operatorname{det}\left[\begin{array}{cc}
\cos ^{3}(\theta) & -3 r \cos ^{2}(\theta) \sin (\theta) \\
\sin ^{3}(\theta) & 3 r \sin ^{2}(\theta) \cos (\theta)
\end{array}\right] d V \\
& =\int_{0}^{1} \int_{0}^{2 \pi} 3 r\left(\cos ^{4}(\theta) \sin ^{2}(\theta)+\sin ^{4}(\theta) \cos ^{2}(\theta)\right) d \theta d r \\
& =\int_{0}^{1} \int_{0}^{2 \pi} 3 r \cos ^{2}(\theta) \sin ^{2}(\theta)\left(\cos ^{2}(\theta)+\sin ^{2}(\theta)\right) d \theta d r \\
& =\int_{0}^{1} \int_{0}^{2 \pi} 3 r \cos ^{2}(\theta) \sin ^{2}(\theta) d \theta d r \\
& =\int_{0}^{1} \int_{0}^{2 \pi} 3 r \frac{\sin ^{2}(2 \theta)}{4} d \theta d r \\
& =\int_{0}^{1} \int_{0}^{2 \pi} 3 r \frac{1-\cos (4 \theta)}{8} d \theta d r \\
& =\int_{0}^{1} \frac{3 r \pi}{4} d r \\
& =3 \pi / 8
\end{aligned}
$$

5. The Solution

Now, let's use the change of variables to prove our surprising result. We can generalize our three-dimensional spherical coordinates to n-dimensional spherical coordinates. In other words, let $r \in[0, \infty), \phi_{1}, \ldots, \phi_{n-2} \in[0, \pi)$, and $\theta \in[0,2 \pi)$. Now, consider the map γ that sends a point $\left(r, \phi_{1}, \ldots, \phi_{n-2}, \theta\right)$ to a point in \mathbf{R}^{n} with the coordinates

$$
\begin{aligned}
& x_{1}=r \cos \left(\phi_{1}\right) \\
& x_{2}=r \sin \left(\phi_{1}\right) \cos \left(\phi_{2}\right) \\
& x_{3}=r \sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cos \left(\phi_{3}\right) \\
& \vdots \\
& x_{n-2}=r \sin \left(\phi_{1}\right) \cdots \sin \left(\phi_{n-3}\right) \cos \left(\phi_{n-2}\right) \\
& x_{n-1}=r \sin \left(\phi_{1}\right) \cdots \sin \left(\phi_{n-2}\right) \sin \left(\phi_{n-2}\right) \cos (\theta) \\
& x_{n}=r \sin \left(\phi_{1}\right) \cdots \sin \left(\phi_{n-2}\right) \sin \left(\phi_{n-2}\right) \sin (\theta) .
\end{aligned}
$$

We can show that this point \mathbf{x} is a point that is distance r from the origin that has angle ϕ_{i} with the first $n-2$ coordinate axes and angle θ with the $(n-1)$-th axis. Thus, we see that this is just a generalization of spherical coordinates to n dimensions.

Inductively, we can show that

$$
\operatorname{det}(D(\gamma))=r^{n-1} \sin ^{n-2}\left(\phi_{1}\right) \sin ^{n-3}\left(\phi_{2}\right) \cdots \sin \left(\phi_{n-2}\right)
$$

and thus the volume of the n-dimensional ball, via change of variables, is just the integral

$$
\int_{0}^{1} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \int_{0}^{2 \pi} r^{n-1} \sin ^{n-2}\left(\phi_{1}\right) \sin ^{n-3}\left(\phi_{2}\right) \cdots \sin \left(\phi_{n-2}\right) d \phi_{1} d \phi_{2} \cdots d \phi_{n-1} d r .
$$

From there, we can use induction to prove the recursion relation

$$
\operatorname{vol}\left(B_{n}\right)=\frac{2 \pi}{n} \operatorname{vol}\left(B_{n-2}\right)
$$

which tells us that for $n \geq 7, \operatorname{vol}\left(B_{n}\right)$ is strictly smaller than $\operatorname{vol}\left(B_{n-2}\right)$. Checking the volumes for the balls B_{1}, \ldots, B_{6} then shows that $\operatorname{vol}\left(B_{5}\right)$ is the greatest amongst those six balls: therefore, the volume of the five-dimensional unit ball B_{5} is greater than the n-dimensional volume of any of the other n-dimensional unit balls, because the volumes are (as shown) decreasing for $n>6$!

These calculations are a little lengthy, but they are totally doable! So if you're bored over weekend and want some practice, try them out! (Feel free to ask me if you get stuck.)

[^0]: Date: May 9, 2013.

