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1. Prelude

I’ll write this formula again: ∫
Ω

dω =

∫
∂Ω

ω

where Ω is a compact region, ∂Ω denotes its boundary taken with positive orienta-
tion, ω is a differential form, and d is the exterior derivative.

Remember that all of these integral formulas are essentially special cases of this
result.

2. Stokes’s Theorem

This is essentially Green’s theorem for surfaces. (Or more accurately, Green’s
theorem is just a kind of Stokes’ theorem.)

Theorem 2.1 (Stokes’s Theorem). Suppose that S is a bounded surface with bound-
ary given by a positively oriented (i.e. counterclockwise) curve C and F : R3 → R3

is a continuous differentiable function. Then∫∫
S

((∇× F ) · n) dS =

∫
C

F · ds

where n denotes the unit normal vector at any point on S.

Remark 2.2. If we have a parametrization φ(x, y) of our surface S, we can explicitly
write our normal vector n as

n =

∂φ
∂x ×

∂φ
∂y

||∂φ∂x ×
∂φ
∂y ||

.

We want to use Stokes’ theorem in essentially the same situations as Green’s
theorem. However, in this case, it tends to be more useful in one direction (turning
a line integral into a surface integral) than the other direction.

• Bad curve. Turning integrals over bad curves into an nicer one of curls of
functions over surfaces.

• Bad function. Turn integrals of bad functions over some curve into integrals
of possible nicer functions over some region.

• We can also go backwards, but it is generally hard to figure out whether
an integrand is of the form (∇× f) · n over a surface. Don’t try to do this
unless you’re really stuck or the problem gives you the function f explicitly,
as in the following example.

Example 1. If F (x, y, z) = (−xy2, x2y, z) and S is the sphere cap {(x, y, z) :
x2 + y2 + z2 = 25, z ≥ 4}, find the integral of (∇× F ) · n over S.
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Solution. We could try and integrate over the surface itself, but it’s a pretty tricky
computation, and you will almost surely make an error somewhere. However, we
see that the boundary is nice, so let’s try and apply Stokes’ theorem to integrate
along the boundary instead! Namely, S has boundary

∂S = {(x, y, z) : x2 + y2 + z2 = 25, z = 4} = {(x, y, z) : x2 + y2 = 32, z = 4},
which we can parametrize in the counterclockwise direction by the curve γ(θ) =
(3 cos(θ), 3 sin(θ), 4). Therefore, by Stokes’ theorem, we have∫∫

S

(∇× F ) · n dS =

∫
C

F dC

=

∫ 2π

0

(−27 cos(θ) sin2(θ), 27 cos2(θ) sin(θ), 4) · (−3 sin(θ), 3 cos(θ), 0) dθ

=

∫ 2π

0

81 cos(θ) sin3(θ) + 81 cos3(θ) sin(θ) dθ

=

∫ 2π

0

81 cos(θ) sin(θ)(sin2(θ) + cos2(θ)) dθ

=

∫ 2π

0

81 cos(θ) sin(θ)

=

∫ 2π

0

81 sin(2θ)

2
dθ

= 0.

�

Example 2. Find the line integral of F (x, y, z) = (y2, x2, xz) around the circle of
C radius 1 in the xy-plane, oriented counterclockwise from above.

Solution. We note that curl(F ) = (0, z, 2y − 2x). By Stokes’ theorem, our line
integral is equal to the integral of ∇ × F over any surface with C as a boundary.
(Isn’t this strange? But it is true!) Let’s make this easy for ourselves and choose
the disk in the xy-plane, parametrized by polar coordinates. We then compute∫
C

F · ds =

∫ 1

0

∫ 2π

0

(∇× F )(φ(r, θ)) · (∂r × ∂θ) dθ dr

=

∫ 1

0

∫ 2π

0

(0, 0, 2r(sin θ − cos θ)) · ((cos θ, sin θ, 0)× (−r sin θ, r cos θ, 0)) dθ dr

=

∫ 1

0

∫ 2π

0

(0, 0, 2r(sin θ − cos θ)) · (0, 0, r) dθ dr

=

∫ 1

0

∫ 2π

0

2r2(sin θ − cos θ) dθ dr

=

∫ 1

0

(−2r2[sin θ + cos θ]

∣∣∣∣2π
0

dr

=

∫ 1

0

0 dr

= 0.
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Example 3. Let S = {(x, y, z) : x2 + y2 + z2 = 1, x, y, z ≥ 0} be an octant of the
unit sphere and let C+ = ∂S be the boundary of S traversed in the counterclockwise
direction viewed from the positive z-axis. if F (x, yz) = (x4, y4, z4), what is

∫
C
F ·

dC?

Solution. One approach here is to just take line integrals. Namely, we can param-
etrize C as three curves

γ1(t) = (cos(t), sin(t), 0)

γ2(t) = (0, cos(t), sin(t))

γ3(t) = (sin(t), 0, cos(t))

where t ∈ [0, π/2]. Note that these traverse the curve in the counterclockwise
direction. Therefore, we have∫

C

F · dC =

3∑
i=1

∫ π/2

0

(F ◦ γi(t)) · (γ′(t)) dt

=

3∑
i=1

∫ π/2

0

− cos4(t) sin(t) + sin4(t) cos(t) dt

= 3

∫ π/2

0

− cos4(t) sin(t) + sin4(t) cos(t) dt

=

[
−3

∫ π/2

0

cos4(t) sin(t) dt

]
+

[
3

∫ π/2

0

sin4(t) cos(t) dt

]
.

To evaluate these last two integrals we u-substitute u = cos(t) for the first integral
and u = sin(t) for the latter integral, so that we obtain∫

C

F · dC =

[
3

∫ 0

1

u4 du

]
+

[
3

∫ 1

0

u4 du

]
= −3

∫ 1

0

u4 du+ 3

∫ 1

0

u4 du

= 0.

Alternatively, we could have used Stokes’ theorem, which tells us the integral of
F over C is the integral of (∇× F ) · n over S. However, we have

curl(F ) = ∇× F

=

(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
= (0− 0, 0− 0, 0− 0)

= (0, 0, 0).

Therefore, (∇×F ) ·n must be zero and so the integral of it over S must be zero. �

Example 4. Evaluate the surface integral
∫∫
S

(∇ × F ) · n dS where S is the top
hemisphere of the unit sphere, and

F = (x2, xy, xz).
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Solution. By Stokes’s theorem, the integral of the curl is the line integral of F
around the boundary. Note that the orientation is counterclockwise, when looking
at it from above, so we can parameterize it by

c(t) = (cos(t), sin(t), 0), t ∈ [0, 2π].

Therefore, the line integral is∫ 2π

0

F · ds =

∫ 2π

0

(cos2(t), cos(t) sin(t), 0) · (− sin(t), cos(t), 0) dt

=

∫ 2π

0

cos2(t) sin(t)− cos2(t) sin(t) dt

= 0.
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