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1. Linear Algebra Review

We’ll begin by doing a quick review of the relevant linear algebra.

Definition 1. A finite subset of n vectors v1, . . . , vn is linearly independent if we
have a linear combination

a1v1 + · · ·+ anvn = 0

then that a1 = a2 = · · · = an = 0. In other words, this is only such way to express
0.

Theorem 2. (The Grand Theorem of Linear Algebra) Suppose we are given a
system of n linear equations in n variables, and let Ax = b denote the corresponding
matrix equation. Then the following are equivalent:

(1) Ax = b has exactly one solution
(2) Ax = 0 has only the trivial solution
(3) A can be row-reduced to the identity matrix
(4) the columns of A are linearly independent
(5) the rows of A are linearly independent
(6) the dimension of the column space of A is n
(7) the dimension of the row space of A is n
(8) det(A) 6= 0
(9) the eigenvalues of A are nonzero

(10) A is invertible
(11) the transpose At is invertible.

In particular, note that A has linearly independent columns if and only if the
determinant of A is nonzero. Remembering this is the first step to understand the
theory of the Wronskian.

2. The Wronskian

The Wronskian is a determinant of a particular matrix and, when it works,
provides a useful way to show that a set of functions is linearly independent in a
given interval.

But what is the Wronskian? It is a little less clear than I would like it to be in
the book, so I have written out a concrete definition.

Definition 1. Given n functions f1, . . . , fn, the Wronskian W (f1, . . . , fn) is given
by

W = W (f1, . . . , fn) = det
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So the Wronskian is the just the determinant of a particular matrix. This square
matrix is often called the fundamental matrix (especially when the determinant is
nonzero, for reasons to be made clear later).

Remark 2. There is also a slightly different definition of fundamental matrix in
your book, but you still take its determinant to get the Wronskian. It’s a good
exercise to understand the connection between this fundamental matrix here and
the fundamental matrix defined in your book. (Ask me if you can’t figure this out.)

Remark 3. Sometimes the fundamental matrix is flipped, with the derivatives lying
above the entries in the vector. However, note that this will give us the same answer
(up to sign), because exchanging adjacent rows in a matrix just switches the sign
of the determinant.

Actually, as far as we’re concerned, the Wronskian is only well-defined up to
constant. For instance, we could easily replace f1(t) with cf1(t) for some nonzero
constant c and our techniques will still work. This is why we are only interested in
the vanishing behavior of the Wronskian, that is, whether it is zero or nonzero.

But why is this weird determinant useful? It’s because it encodes essential
information about the linear independence of the solutions.

2.1. The Wronskian and Linear Independence. If the functions fi are linearly
dependent, then the columns of the Wronskian are linearly dependent as well,
because differentiation is a linear operation. Hence, W (fi) = 0. Thus, we can use
the Wronskian to show that a set of differentiable functions is linearly independent
on an interval by showing that it does not vanish identically. Let’s see an example.

Example 4. Are sin t and cos t linearly independent?
This is interesting if you think about it, because sin t and cos t are very similar

functions, one function is just the other shifted by π/2. However, it turns out that
sin t and cos t are linearly independent. One way to see this is to consider the power
series expansions. Another way is by computing the Wronskian.

Let f1(t) = cos t and f2(t) = sin(t). Then f ′1(t) = − sin t and f ′2(t) = cos t and
so we compute

W (cos t, sin t) = det

[
cos t sin t
− sin t cos t

]
= (cos t)(cos t)− (− sin t)(sin t)

= sin2 t+ cos2 t

= 1.

Since the Wronskian is nonzero, it follows that sin t and cos t are linearly indepen-
dent.

Example 5. Are f(x) = 9 cos(2x) and g(x) = 2 cos2(x) − 2 sin2(x) linearly inde-
pendent?

Consider the equation

c(9 cos(2x)) + k(2 cos2(x)− 2 sin2(x)) = 0.

We need to determine if we can find nonzero constants c and k that will make this
true for all x. This is generally hard to do. For this equation, you either saw the
trick instantly or you were stuck. You can simplify this process by having a good
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intuition for the solutions or using any number of standard tricks, but it’s hard to
do this in general.

In this case, we recall that

cos2(x)− sin2(x) = cos(2x)

and use this to show that our equation is

(9c+ 2k) cos(2x) = 0.

Hence, c = −2 and k = 9 are one of infinitely many solutions that work, showing
that f(x) and g(x) are not linearly independent.

We then expect that the Wronskian must be zero. Indeed, since f ′(x) = −18 sin(2x)
and g′(x) = −4 cos(x) sin(x)− 4 sin(x) cos(x) = −8 sin(x) cos(x). Therefore,

W (f, g) = det

[
9 cos(2x) 2 cos2(x)− 2 sin2(x)
−18 sin(2x) −8 sin(x) cos(x)

]
= −72 cos(2x) sin(x) cos(x) + 36 sin(2x)(cos2(x)− sin2(x))

= −72 cos(2x) sin(x) cos(x) + 36(2 sin(x) cos(x))(cos(2x))

= 0

as expected.

Hence, we see that linear dependence (at some point) implies that the Wronskian
is zero. However, the following remark is very important.

Remark 6. If the Wronskian is identically zero over the interval, the functions may
or may not be linearly independent. You can’t say anything here without further
reasoning, like finding an explicit solution, as in the example.

A common mistake is assuming that W ≡ 0 everywhere implies linear depen-
dence. This is not true. The classical example is to consider x2 and x|x|. They
have continuous derivatives and their Wronskian vanishes everywhere, but they are
not linearly dependent in a neighborhood of 0.

This remark is important, so take some time to absorb it. It’s not emphasized in
your text, but the wording of the results hints at their subtlety. Recall the relevant
theorems about Wronskians from the book. Let’s interpret them very carefully.

Theorem 7. If x(1), . . . ,x(n) are solutions of x’ = P(t)x on the interval α <
t < β, then in this interval W [x(1), . . . ,x(n)] either is identically zero or else never
vanishes.

Note the seemingly strange and awkward wording of the conclusion: “either
is identically zero or never vanishes.” This is not a mistake, an oversight, or an
indicator of poor writing. It is needed in order for the theorem to be true. It says
that if you have a linearly independent set of solutions at a point, the Wronskian
can be identically zero or nonzero.

Indeed, we often apply the theorem in its its contrapositive form, which is logi-
cally equivalent.

Theorem 8. Suppose that W [x(1), . . . ,x(n)] is not identically zero and vanishes at
some α < t < β, then x(1), . . . ,x(n) are not solutions of x’ = P(t)x.

In other words, if the Wronskian is not identically zero, but is, say, a function
that is zero at some point in the interval, then the solutions are linearly dependent.
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To reiterate, if you just know the Wronskian is zero, you can’t say much about
linear independence or dependence without more work.

These theorems are powerful because of two reasons: (a) it means that we don’t
have to check W at every point in the interval, and (b) we can determine whether
x(1), . . . ,x(n) is a fundamental set of solutions (that is, a linearly independent set of
solutions to our system of differential equations) by simply evaluating their Wron-
skian at any point in the interval.

We’ll see the importance of only evaluating a point in the interval, illustrated in
the new section.

2.2. Abel’s Identity. Now, in the special situation that we have, that is, linear
differential equations, there’s a shortcut to calculate the Wronskian called Abel’s
Identity. This is quite powerful.

When the functions fi are solutions of a linear differential equation, the Wron-
skian can be found explicitly by using Abel’s identity, even if the functions fi are
not known explicitly.

There’s a general formula, but for this class, it’s probably best to understand
the following simplified case.

Definition 9. Consider a homogeneous linear second-order ODE:

y′′ + p(t)y′ + q(t)y = 0

on some interval I with p(t) a continuous function. (We can assume that we are
working in either a real or complex situation.) Abel’s identity says that if y1(t)
and y2(t) are two solutions of this differential equation, and given any t0 ∈ I, the
Wronskian can be expressed as

W (y1, y2)(t) = W (y1, y2)(t0) exp

(
−
∫ t

t0

p(u) du

)
for all t ∈ I.

Example 10. Consider

y′′ + y = 0

with the interval I being the real line. Then f1(x) = sin(x) and f2(x) = cos(x)
from above are solutions. Recall the Wronskian was identically 1, so this formula
holds.

We can see that the same holds for our second example above, because it is
identically zero everywhere.

We now state the general form of Abel’s identity.

Theorem 11. Consider a homogeneous linear nth order ODE:

y(n) + pn−1(x)y(n−1) + · · ·+ p1(x)y′ + p0(x)y = 0

on an interval I. Let y1, . . . , yn be solutions to our differential equation. Given any
x0 ∈ I, the Wronskian W (y1, . . . , yn) then satisfies the relation

W (y1, . . . , yn)(x) = W (y1, . . . , yn)(x0) exp

(
−
∫ x

x0

pn−1(u) du

)
for all x ∈ I.
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Remark 12. In particular, we see that this implies that the Wronskian is either
identically zero of it is different from zero at every point t ∈ I. Again, this is why
the theorem above is worded the way it is.

If it is different from zero at every point t ∈ I, then the two solutions y1 and y2
are linearly independent.


