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1. Nonhomogeneous Linear ODEs

We are now going to learn how to solve nonhomogeneous linear ODEs. There are
a number of techniques to solve these, and we’ll go over three that are extremely
useful: variation of parameters, undetermined coefficients, and power series meth-
ods.

The methods that we will learn this week aren’t tricky, but the calculations do get
lengthy, so you want to check your answers and be diligent about your bookkeeping.
Be careful out there!

2. Variation of Parameters

Theorem 1. Consider the differential equation

y′′ + q(t)y′ + r(t)y = g(t).

Assume that y1(t) and y2(t) are a fundamental set of solutions for the homogeneous
equation

y′′ + q(t)y′ + r(t)y = 0.

Then a particular solution for the nonhomogeneous differential equation is

Yp(t) = −y1
∫

y2g(t)

W (y1, y2)
dt + y2

∫
y1g(t)

W (y1, y2)
dt.

Remark 2. Despite what the solution above looks like, it doesn’t matter which one
is y1(t) and which one is y2(t). Like most techniques in this class, it is independent
of choice. You’ll end up which the same answer either way.

You’ll see why there’s a −y1 in the formula above for 2nd order linear ODEs
once we introduce the formula for general order.

2.1. How do you use VOP?.

(1) Check that you have a linear ODE.
(2) Check that your highest order term has coefficient 1.
(3) Find a fundamental set of solutions to the associated homogeneous equa-

tion. (Denote the complimentary solution by yc.)
(4) Compute the Wronskian. It should be nonzero.
(5) Plug your set of solutions into the formula to get a particular solution yp.
(6) If needed, add our result from the formula to the solution from the homo-

geneous case to get the general solution y = yc + yp.

Let’s see an example.

Example 3. Find a general solution to the differential equation:

2y′′ + 18y = 6 tan(3t).
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Solution. We note that we have a linear ODE. Since our formula for variation of
parameters requires us to have a coefficient of 1 for the y′′ term, we need to divide
our equation above by two. Hence, we will be solving the equation

y′′ + 9y = 3 tan(3t).

Suppose we are given the solution for this differential equation:

yc(t) = c1 cos(3t) + c2 sin(3t).

You can check this this is indeed a solution to our homogeneous equation.
Therefore, we have

y1(t) = cos(3t) and y2(t) = sin(3t).

Taking the Wronskian, we see that

W := W (y1, y2) = det

[
cos(3t) sin(3t)
−3 sin(3t) 3 cos(3t)

]
= 3 cos2(3t) + 3 sin2(3t) = 3.

Therefore, by applying our formula for variation of parameters, we see that the
particular solution is

Yp(t) =− cos(3t)

∫
3 sin(3t) tan(3t)

3
dt + sin(3t)

∫
3 cos(3t) tan(3t)

3
dt

= − cos(3t)

∫
sin2(3t)

cos(3t)
dt + sin(3t)

∫
sin(3t) dt

= − cos(3t)

∫
1− cos2(3t)

cos(3t)
dt + sin(3t)

∫
sin(3t) dt

= − cos(3t)

∫
[sec(3t)− cos(3t)] dt + sin(3t)

∫
sin(3t) dt

= −cos(3t)

3
(ln | sec(3t) + tan(3t)| − sin(3t)) +

sin(3t)

3
(− cos(3t))

= −cos(3t)

3
ln | sec(3t) + tan(3t)|.

Therefore, the general solution is

y(t) = c1 cos(3t) + c2 sin(3t)− cos(3t)

3
ln | sec(3t) + tan(3t)|.

�

Remark 4. Be careful with your bookkeeping for these problems. The formula isn’t
particularly complicated, but you need to make sure to keep your terms straight.
For instance, do not move terms that depend on t from the outside of the integrals
to the inside of the integrals.

3. Method of Undetermined Coefficients

For this one, it’s easier to see the method in action than to describe it.

Example 1. Determine a particular solution to

y′′ − 4y′ − 12y = 3e5t.
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Proof. We first want to find the complementary solution to the differential equation,
which comes from solving the related homogeneous equation

y′′ − 4y′ − 12y = 0.

The characteristic equation is of the form

r2 − 4r − 12 = (r − 6)(r + 2) = 0

and so the roots are r = −2 and r = 6. Thus, the complementary solution is

yc(t) = c1e
−2t + c2e

6t.

As a general rule, you want to compute the complementary solution first, for reasons
to be made clear as do more of these problems.

Let’s begin with calculating the particular solution. Since the inhomogeneous
part is an exponential, and we know that they do not appear or disappear with
differentiation, we guess that a likely form of the particular solution would be

yp(t) = Ae5t

for some constant A. Now we want to plug this into the differential equation and
see if we can determine the coefficients:

25Ae5t − 4(5Ae5t)− 12(Ae5t) = 3e5t

−7Ae5t = 3e5t.

Thus, for our guess to be a solution, we need to choose an A that matches, namely,

A = −3

7
.

Therefore, a particular solution to the differential equation is

yp(t) = −3

7
e5t.

�

So how do you solve these?
1. Solve the complementary equation.
2. Guess the inhomogeneous part. (exponentials if there are exponentials, poly-

nomials if you see polynomials, “sin + cos” if you see sine or cosine, etc.)
3. Plug your particular solution into the differential equation.
4. Match coefficients.

4. Series Solutions

The philosophy here is as follows: splitting up (expanding) a function into infin-
itely many simple parts is easier than dealing with the function itself.

4.1. Ordinary/Singular Points. Consider the differential equation

p(x)y′′ + q(x)y′ + r(x)y = 0.

Definition 1. We say that x = x0 is an ordinary point if both

q(x)

p(x)
and

r(x)

p(x)

are analytic at x = x0. That is, these two quantities have Taylor series around
x = x0.
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If a point is not ordinary, it is called a singular point.

Remark 2. If p(x), q(x), r(x) are polynomials, then checking that the two quotients
above are analytic reduces to saying that p(x0) 6= 0. Since we usually deal with the
polynomial case in this class, you can readily use this fact.

4.2. Series Solution Method. The basic idea to finding a series solution to a
differential equation is to assume that there exists a solution of the form

y(x) =

∞∑
n=0

an(x− x0)n

and then to try and determine the coefficients an. However, we can only do this
if the point x = x0 is ordinary. Thus, we see that the classification above is very
important.

Let’s see some examples of this in action. I’ll do one example slowly, making
lots of comments along the way.

Example 3. Determine a series solution for the following differential equation
about x0 = 0:

y′′ + y = 0.

Note that p(x) = 1 in this case, so every point is ordinary. We’re looking for
solutions of the form

y(x) =

∞∑
n=0

anx
n.

We need to plug this into our DE, so we calculate the derivatives

y′(x) =

∞∑
n=1

nanx
n−1

y′′(x) =

∞∑
n=2

n(n− 1)anx
n−2.

Observe that we can renumber these indices to start at n = 0, but this is not a good
idea here. Generally speaking, if it turns out things become easier by reindexing to
start at n = 0, we can fix that later.

Now, plug these into our differential equation, so we have

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=0

anx
n = 0.

We now want to combine everything into a single series. To do this, we need to get
both series starting at the same index, and make sure that the exponents on the x
are the same in both series.

A good way to start is to begin by getting matching the exponents of x. It’s
generally best to get the exponent to be xn. The second term is already in this
form, and we need to shift the first series down by 2 to get the exponent up to this
form. By shifting the first power series, we get

∞∑
n=0

(n + 2)(n + 1)an+2x
n +

∞∑
n=0

anx
n = 0.
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Now notice that while shifting, we also got both series starting from the same index.
This won’t always be the case, but for now, we offer a thanks to the math gods and
accept our blessing. We can then add up the two series, to get

∞∑
n=0

[(n + 2)(n + 1)an+2 + an]xn = 0.

Now recall our trivial observation, which implies that

(n + 2)(n + 1)an+2 + an = 0

for all n. This gives us a recurrence relation, like the ones we saw for difference
equations. In particular, notice that we always want to include the values for n,
since we won’t always get a power series whose index starts at n = 0.

Now, let’s determine the values of the an’s. Note that the recurrence relation
has two different an’s, so we can’t just solve for an and get a formula that works
for all n. However, we can use the recurrence relation to determine all but two of
the an’s.

First solve the recurrence relation for the an with the largest subscript. Doing
this, we obtain

an+2 = − an
(n + 2)(n + 1)

for n = 0, 1, 2, . . ..
What do we do next? Just start calculating.

n = 0, a2 =
−a0
2 · 1

n = 1, a3 =
−a1
3 · 2

n = 2, a4 =
−a2
4 · 3

=
a0

4 · 3 · 2 · 1
n = 3, a5 =

−a3
5 · 4

=
a1

5 · 4 · 3 · 2
n = 4, a6 =

−a4
6 · 5

=
−a0

6 · 5 · 4 · 3 · 2 · 1
n = 5, a7 =

−a5
7 · 6

=
−a1

7 · 6 · 5 · 4 · 3 · 2
.

Okay, so we’re seeing a pattern here: for k = 1, 2, . . ., we have

a2k =
(−1)ka0

(2k)!
, a2k+1 =

(−1)ka1
(2k + 1)!

.

Observe that at each step we plugged back in the previous answer, so that when
the subscript was even, we could always write an in terms of a0; and when the
subscript was odd, we could always write an in terms of a1. This is not always the
case.

Furthermore, notice that the formula we developed only works for k = 1, 2, 3, . . ..
However, in this particular case, it also works for a0. Again, this will not always
be the case.

You might be worried that we don’t know what a0 and a1. However, it turns
out that we cannot determine them without more information, like an initial value
problem.
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Now that we have formulas for the an’s, let’s calculate the solution.

y(x) =

∞∑
n=0

anx
n

= a0 + a1x + a2x
2 + · · ·+ a2kx

2k + a2k+1x
2k+1

= a0 + a1x−
a0
2!
x2 − a1

3!
x3 + · · ·+ (−1)ka0

(2k)!
x2k +

(−1)k+1a1
(2k + 1)!

x2k+1 + · · · .

We then want to collect all the terms with the same coefficient and then factor out
the coefficient:

y(x) = a0

[
1− x2

2!
+ · · ·+ (−1)kx2k

(2k)!
+ · · ·

]
+ a1

[
x− x3

3!
+ · · ·+ (−1)k+1

(2k + 1)!
x2k+1 + · · ·

]
= a0

∞∑
k=0

(−1)kx2k

(2k)!
+ a1

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
.

Let’s see another example, where I’ll skip the waffling.

Example 4. Find a series solution (in terms of powers of x) to the boundary value
problem:

y′′ + 2t2y = 0, y′(0) = 0, y(0) = 2.

We know the solution is of the form y =
∑∞

i=0 ait
i. Any solution to the problem

must have
∞∑
i=0

(i + 2)(i + 1)ai+2t
i + 2

∞∑
i=2

ai−2t
i = 0.

Since the coefficients must all cancel out, we must have

2ai−2 = −(i + 2)(i + 1)ai+2.

Furthermore, we have a2 = a3 = 0.
From the initial conditions, we know that a0 = 2 and a1 = 0. Therefore, ai = 0

if a ≡ 0 (mod 4), and if i = 4k, then we know

ai =
2

−i(i− 1)
ai−4 =

2

−i(i− 1)
· 2

−(i− 4)(i− 5)
· · · 2

−4 · 3
a0

so we have

a4k =
(−1)k2k+1∏k−1

j=0 (i− 4j)(i− 4j − 1)
.


