
MATH 2A RECITATION 10/13/11

1. Introduction

Homeworks are in front, in alphabetical order. Scores are on the back of each
sheet, and you can pick them up at the end of class. Graded homeworks from last
time are on the second floor next to the math office. You can also pick them up
at my office hours. Based on your feedback, my office hours are now 2:00-3:00pm
Thursday after recitation. Also, note that Prof. Ramakrishnan’s official office
hours are now from Friday 4-5pm. I highly recommend you attend his office hours,
because he’s awesome.

1.1. Remarks on the last homework. People seemed to do a good job on exact
equations, finding integrating factors, etc.

The only problem was that many people had problems with the first question on
the homework. Remember, asymptotic behavior means studying what happens to
your solution when your independent variable goes to infinity, e.g. how a solution
y behaves as t→∞.

Make sure you write your analysis in words. We can look at graphs, and you
can refer to graphs, and a graph will almost certainly help you find the correct
solution (once again, computers make it easier!), but a graph alone is not enough.
For instance, many of you had the correct graphs and correctly analyzed dy/dt,
but you never said what this behavior meant for y as t → ∞! Remember the
same reminders from taking exams: read the prompt and make sure you fully
answer the question. Since we’re only grading for the behavior of y, this caught
some people off guard.

You guys actually did a pretty good job studying these stability questions, and
many probably would have done just as well (or even better) on the homework had
we graded for stability. However, we did not grade for that last week, and instead
we are focusing on stability on two problems this week. You seem to know how
to analyze the asymptotic behavior of differential equations, so I’ll focus on the
difference equations this week.

2. Difference Equations

Differential equations are great for modeling things with a continually changing
population or value. However, if the change happens incrementally rather than
continuously, then differential equations are not ideal for modeling. Instead, we
will use difference equations, that is, recursively defined sequences, to model such
phenomena. Examples of common difference equations include things like monthly
compounded interest, seasonal business like hotels in Big Bear, studying popula-
tions of things like salmon that spawn once a year, etc.

For the moment, we are restricting ourselves to first-order difference equations,
that is, ones that only depend on the last term, like xn+1 = x2

n. There are two
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main types of difference equations that come up in the course: linear and nonlinear.
We’ll cover the most important examples of both. They are also in the book, but
in greater abstraction. I find it illustrative to walk through this with a concrete
example.

Example 1. Each year, we put 1000 new students into school every year, but due
to a zombie infestation/biblical plague/ultra-hard differential equations course only
30% of the students survive and returning the next year. How many students will
be in the school in a given year, and what will happen to the population as time
goes on?

Solution. This is a linear finite difference equation that we can model with

yn+1 = .3yn + 1000.

We have

y0 = 1000

y1 = .3y0 + 1000

y2 = .3y1 + 1000 = .3(.3y0 + 1000) + 1000

· · ·
yn = y0(1 + .3 + .32 + .33 + · · ·+ .3n−1) + .3ny0.

Now, observe that the first part of yn is a geometric series, so we have

yn =
y0(1− .3n)

1− .3
+ .3ny0.

Therefore, as n→∞, we see that the limiting population will be 1000/.7 ≈ 1429.
We also see that we can different stable solutions by changing the number of

student y0 that we put in each year. �

More generally, for a linear first-order difference equation

yn+1 = ryn + b,

the solution is

yn =
b(1− rn)

1− r
+ rny0.

Now, let’s try an analysis of the most important difference equation.
You might remember that there is a simple differential equation that models

exponential growth, namely,
dy

dt
= ry.

As you have probably seen in any math course before this quarter, the solution is

y = Pert

where P is your initial starting population.
However, this model has a major shortcoming: it assumes that populations can

increase without bound. Usually there is a limit to the population size based on
things like space and food. To handle this, we include a factor that will equal zero
when we hit this limit. For example, if the limit is K, then the adjusted growth
model is given by

dy

dt
= ry

(
1− y

K

)
.
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Let’s study a variation of this with difference equations. This is a very important
example, so while it is in the book, I will also go over it in recitation.

Remark 2. The next is a qualitative study of difference equations, like we want you
to do for some of the homework problems. However, what I write will probably
not suffice for full marks on a solution. On the homework, you need to give more
details and analysis.

Example 3. With some work, we can model the above by the finite difference
logistics equation

un+1 = run(1− un),

the one you had on the fourth problem on the homework last week.
We can find the equilibrium by solving

un = run(1− un).

We have

run − ru2
n − un = −ru2

n + (r − 1)un

= un(−run + 1− r).

Therefore, we have equilibrium solutions

un = 0 or un =
r − 1

r
.

Let’s examine the stability of the equilibrium points. Look at values of un very close
to the equilibrium value (say a tiny fraction away from 0, certainly less than 1).
For first point, un is much larger than (un)2, so our equation can be approximated
by

un+1 = run(1− un) = run − ru2
n ∼ run

for |r| < 1, this converges to zero, and so the first equilibrium point is asymptotically
stable in this range.

For the other equilibrium value, write

un =
r − 1

r
+ vn,

so that we get an equilibrium when vn = 0. We can now substitute this into the
difference equation to get

vn+1 = (2− r)vn + rv2n

and chop off the nonlinear term (since vn is very small) to get

vn+1 = (2− r)vn.

This converges to 0 for |2− r| < 1 or 1 < r < 3. Therefore, the second equilibrium
point is asymptotically stable in this range.

At r = 1, observe that there is an exchange of stability. What would once
converge for one solution will then converge to the other solution.

Now for r > 3, the sequence exhibits strange behavior. In particular, for 3 <
r < 3.57 (approximately), the sequence is periodic. However, past this value, we
have chaotic behavior, that is, no regularity. Details, pictures, and further analysis
are in the book in chapter 2.9.
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2.1. Complex case. If you are also considering complex solutions like on 2(c) on
this week’s homework, you need to do analysis for neighborhoods close to 0, not
just real intervals. Remember that “closeness” in complex numbers is defined in
a different way than the reals, and you might not be able to model this as easily.
Namely, if x + iy ∈ C, the complex numbers, then

|x + iy| =
√
x2 + y2.

To analyze complex solutions, it is not enough to analyze behavior in a given interval
like in the real case. Instead, you must analyze behavior within a small radius of
your point.

Remark 4. Problem 2(c) on your homework is actually an easy variation of a very
famous work in mathematics. We are not asking you to do the same problem,
but maybe reading about this will give you ideas as to how you can analyze your
problem. For instance, zn+1 = z2n + c where z0 = 0 is the difference equation
used to create the Mandelbrot set, the first concrete discovery of a fractal! The
Mandelbrot set is constructed by studying stability conditions for differing values
of c. For instance, c = 1 gives the sequence 0, 1, 2, 5, 26, . . . which is not bounded
and so 1 is not in the Mandelbrot set. However, if c = i, then we get 0, i, (−1 +
i),−i, (−1 + i),−i, . . . which is bounded and so i is in the Mandelbrot set.

Now, 2(c) is not the Mandelbrot set, but it hints at that kind of analysis!
Here, you definitely want to use a computer! You can still do all of the analysis

by hand, but you’ll be missing out on a lot of beautiful mathematics by doing so.

3. Euler’s method

People will always call this “Euler’s method,” but its lesser-used name “tangent
line method” is much more descriptive. Here’s what’s going on.

(1) Start at your initial point, get dx/dt there by evaluating f(x, t).
(2) Go some small distance h along a line with that slope.
(3) Get the actual dx/dt there and go back to step 2.

Repeat this until you reach the t-value t1 for which you want to know x(t). In
fancy math words, you have “approximated the value of x(t1) with Euler’s method
with a step size of h.” Don’t you sound smart saying that?

The recurrence can be stated as follows:

tn = nh

xn+1 = xn + hf(xn, tn)

Example 1. Let dx/dt = f(xn, tn) = x− t, and x(0) = 0. Approximate the value
of x(1) using Euler’s method with a step of size h = 1/4.

We set the initial values to x0 = 0, and t0 = 0. Then we have

t1 = 1/4 x1 = 0 + (1/4)0 = 0

t2 = 1/2 x2 = 0 + (1/4)(−1/4) = −1/16

t3 = 3/4 x3 = −1/16 + (1/4)(−1/16− 1/2) = −13/64

t4 = 1 x4 = −13/64 + (1/4)(−13/64− 3/4) = −113/256 ≈ 0.44

A step size of h = 1/200 gives us x(1) = −0.711517. The actual answer is
−0.7182818, that is (2− e), so the answer isn’t too far off.


