
MATH 2A RECITATION 11/17/11

1. Quick Review of Series

The power series of a function f(x) is an expression of the function as an infinite
sum:

f(x) =

∞∑
n=0

an(x− x0)n

where an and x0 are numbers, and x is the undetermined variable.

Remark 1. Recall that power series for functions do not always exist. This is an
important condition, so it deserves a special name. Indeed, we call a function f(x)
analytic at x0 if it has a power series expansion about x0 that converges near x0.
Translated into math language, we say that “f(x) is analytic at x0 if its Taylor
expansion around x0 has positive radius of convergence (and converges to f(x)).”

Most functions that you will see in this class will be analytic (e.g. trig functions),
but you need to be careful.

Now, let’s recall one of the most important questions from calculus: When does
a power series exist? This is answered by looking at the convergence of the power
series.

Definition 2. We say that a power series converges at x = c if the series
∞∑

n=0

an(c− x0)n

converges. Namely, the series will converge if the limit of partial sums

lim
N→∞

N∑
n=0

an(c− x0)n

exists and is finite.

Note that a power series will always converge if x = x0, in which case the power
series is

∞∑
n=0

(x0 − x0)n = a0.

Hence, the power series are guaranteed to exist for at least one value of x. This is
also why we ask for positive radius of convergence for analyticity.

Recall the following fact about power series.

Theorem 3. Given a power series
∑
an(x− x0)n, there exists a number 0 ≤ ρ ≤

∞, called the radius of convergence such that the power series converges for
|x− x0| < ρ and diverges for |x− x0| > ρ.
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Remark 4. Note that this doesn’t say anything about how the series converges
on the boundary. Indeed, almost anything can happen with respect to divergence
on the boundary. For instance, there are functions that converge at every point
but one on the boundary. However, questions like these will be relegated to more
advanced classes.

How do we find the radius of convergence? Again, think back to the tests of con-
vergence from calculus. By slightly modifying those tests, we obtain the following
methods for finding ρ.

Theorem 5. (Ratio test method) Using the ratio test, we can calculate

ρ = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ .
(Root test method) By the root test, we can calculate

ρ =
1

lim supn→∞
n
√
|an|

Remark 6. It is usually easier to compute the radius of convergence via the ratio
test method than the root test, but sometimes you do need to use the root test. If
the limit for the ratio test exists, however, the radius of convergence you get is the
same as if you used the root test.

Example 7. Calculate the radius of convergence for the power series
∞∑

n=0

(−3)n

n7n+1
(x− 5)n.

We use the ratio test method:

ρ = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣
= lim

n→∞

∣∣∣∣ (−3)n

n7n+1
· (n+ 1)7n+2

(−3)n+1

∣∣∣∣
= lim

n→∞

∣∣∣∣ 1n · (n+ 1)7

−3

∣∣∣∣
=

7

3
.

Why do we care about the radius of convergence? It’s because in order for a
series solution to a DE to exist at x, it needs to converge at x. Equivalently, if the
power series solution does not converge at x, then the series solution will not exist
at x. Thus, we see that this information is crucial for solving differential equations.

Now, the key to understanding series solutions is the following almost trivial
observation: the only way that

a+ bx+ cx2 = 0

for all x, is for a = b = c = 0. Similarly, if we have a power series such that
∞∑

n=0

an(x− x0)n = 0

for all x, then an = 0 for all n.
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Despite all the fancy tricks that we’ll learn with series methods for the rest of
the quarter, all of them ultimately trace back to this simple observation.

2. Series Solutions

The philosophy here is as follows: splitting up (expanding) a function into infin-
itely many simple parts is easier than dealing with the function itself.

2.1. Ordinary/Singular Points. Consider the differential equation

p(x)y′′ + q(x)y′ + r(x)y = 0.

Definition 1. We say that x = x0 is an ordinary point if both

q(x)

p(x)
and

r(x)

p(x)

are analytic at x = x0. That is, these two quantities have Taylor series around
x = x0.

If a point is not ordinary, it is called a singular point.

Remark 2. If p(x), q(x), r(x) are polynomials, then checking that the two quotients
above are analytic reduces to saying that p(x0) 6= 0. Since we usually deal with the
polynomial case in this class, you can readily use this fact.

2.2. Series Solution Method. The basic idea to finding a series solution to a
differential equation is to assume that there exists a solution of the form

y(x) =

∞∑
n=0

an(x− x0)n

and then to try and determine the coefficients an. However, we can only do this
if the point x = x0 is ordinary. Thus, we see that the classification above is very
important.

Let’s see some examples of this in action. I’ll do one example slowly, making
lots of comments along the way.

Example 3. Determine a series solution for the following differential equation
about x0 = 0:

y′′ + y = 0.

Note that p(x) = 1 in this case, so every point is ordinary. We’re looking for
solutions of the form

y(x) =

∞∑
n=0

anx
n.

We need to plug this into our DE, so we calculate the derivatives

y′(x) =

∞∑
n=1

nanx
n−1

y′′(x) =

∞∑
n=2

n(n− 1)anx
n−2.

Observe that we can renumber these indices to start at n = 0, but this is not a good
idea here. Generally speaking, if it turns out things become easier by reindexing to
start at n = 0, we can fix that later.
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Now, plug these into our differential equation, so we have

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=0

anx
n = 0.

We now want to combine everything into a single series. To do this, we need to get
both series starting at the same index, and make sure that the exponents on the x
are the same in both series.

A good way to start is to begin by getting matching the exponents of x. It’s
generally best to get the exponent to be xn. The second term is already in this
form, and we need to shift the first series down by 2 to get the exponent up to this
form. By shifting the first power series, we get

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=0

anx
n = 0.

Now notice that while shifting, we also got both series starting from the same index.
This won’t always be the case, but for now, we offer a thanks to the math gods and
accept our blessing. We can then add up the two series, to get

∞∑
n=0

[(n+ 2)(n+ 1)an+2 + an]xn = 0.

Now recall our trivial observation, which implies that

(n+ 2)(n+ 1)an+2 + an = 0

for all n. This gives us a recurrence relation, like the ones we saw for difference
equations. In particular, notice that we always want to include the values for n,
since we won’t always get a power series whose index starts at n = 0.

Now, let’s determine the values of the an’s. Note that the recurrence relation
has two different an’s, so we can’t just solve for an and get a formula that works
for all n. However, we can use the recurrence relation to determine all but two of
the an’s.

First solve the recurrence relation for the an with the largest subscript. Doing
this, we obtain

an+2 = − an
(n+ 2)(n+ 1)

for n = 0, 1, 2, . . ..
What do we do next? Just start calculating.

n = 0, a2 =
−a0
2 · 1

n = 1, a3 =
−a1
3 · 2

n = 2, a4 =
−a2
4 · 3

=
a0

4 · 3 · 2 · 1
n = 3, a5 =

−a3
5 · 4

=
a1

5 · 4 · 3 · 2
n = 4, a6 =

−a4
6 · 5

=
−a0

6 · 5 · 4 · 3 · 2 · 1
n = 5, a7 =

−a5
7 · 6

=
−a1

7 · 6 · 5 · 4 · 3 · 2
.
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Okay, so we’re seeing a pattern here: for k = 1, 2, . . ., we have

a2k =
(−1)ka0

(2k)!
, a2k+1 =

(−1)ka1
(2k + 1)!

.

Observe that at each step we plugged back in the previous answer, so that when
the subscript was even, we could always write an in terms of a0; and when the
subscript was odd, we could always write an in terms of a1. This is not always the
case.

Furthermore, notice that the formula we developed only works for k = 1, 2, 3, . . ..
However, in this particular case, it also works for a0. Again, this will not always
be the case.

You might be worried that we don’t know what a0 and a1. However, it turns
out that we cannot determine them without more information, like an initial value
problem.

Now that we have formulas for the an’s, let’s calculate the solution.

y(x) =

∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + · · ·+ a2kx

2k + a2k+1x
2k+1

= a0 + a1x−
a0
2!
x2 − a1

3!
x3 + · · ·+ (−1)ka0

(2k)!
x2k +

(−1)k+1a1
(2k + 1)!

x2k+1 + · · · .

We then want to collect all the terms with the same coefficient and then factor out
the coefficient:

y(x) = a0

[
1− x2

2!
+ · · ·+ (−1)kx2k

(2k)!
+ · · ·

]
+ a1

[
x− x3

3!
+ · · ·+ (−1)k+1

(2k + 1)!
x2k+1 + · · ·

]
= a0

∞∑
k=0

(−1)kx2k

(2k)!
+ a1

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
.

Let’s see another example, where I’ll skip the waffling.

Example 4. Find a series solution (in terms of powers of x) to the boundary value
problem:

y′′ + 2t2y = 0, y′(0) = 0, y(0) = 2.

We know the solution is of the form y =
∑∞

i=0 ait
i. Any solution to the problem

must have
∞∑
i=0

(i+ 2)(i+ 1)ai+2t
i + 2

∞∑
i=2

ai−2t
i = 0.

Since the coefficients must all cancel out, we must have

2ai−2 = −(i+ 2)(i+ 1)ai+2.

Furthermore, we have a2 = a3 = 0.
From the initial conditions, we know that a0 = 2 and a1 = 0. Therefore, ai = 0

if a ≡ 0 (mod 4), and if i = 4k, then we know

ai =
2

−i(i− 1)
ai−4 =

2

−i(i− 1)
· 2

−(i− 4)(i− 5)
· · · 2

−4 · 3
a0
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so we have

a4k =
(−1)k2k+1∏k−1

j=0 (i− 4j)(i− 4j − 1)
.


