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1. Introduction

Your midterms are now graded and available for pickup.
We’re now moving onto statistics. It tends to have a slightly different flavor

than probability, but we are approach statistics assuming that you know proba-
bility, unlike, say, your high school AP Statistics course. That’s not to say that
such knowledge is worthless, but we are approaching things from a slightly more
sophisticated viewpoint.

2. Method of Maximum Likelihood/Maximum Likelihood Estimate

Suppose we’re trying to measure the true value of some quantity xT , like the
average height of people in the United States. In many cases, like this example, it’s
impractical to try and find this quantity precisely. Instead, we would like to find a
good approximation, which is usually good enough for our purposes.

One way to do this is just make repeated measurements of this quantity, call
them x1, x2, . . . , xn. What is the most obvious way to estimate xT given these
measurements?

The most basic thing to do is to take the average, that is, set

xT = xi =
1

n

n∑
i=1

xi.

This is called the sample mean.

Does this procedure make sense? Sometimes yes, sometimes less so. For instance,
it wouldn’t help much if you’re trying to measure the occurrence of a one-of-a-kind
event, or if you don’t know that your measurements are independent even identically
distributed. However, before we learn the fancy stuff, we need to master the basic
case.

When viewed from 10,000 feet, the Method of Maximum Likelihood is just a
general method for estimating parameters of interest based on data. The way we
estimate this is by finding a “likelihood” function that takes in parameters given
some observed outcomes and spits out the probability of those observed outcomes
given our parameter values. We then try and tweak our parameters to “fit” our data
and get the parameters that provide the “maximum likelihood” of those outcomes
occurring. It’s most illustrative to see an example.

Example 1 (Discrete). As usual, the discrete case is most intuitive. Suppose that
you know that you have X1, . . . , Xn IID variables that you know follow a Poisson
distribution. We want to find the mean of the Poisson distribution.
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Since the variables are independent, their joint density is a product of densities,
in other words, our likelihood function is

L(λ) =
∏
i

e−λλxi

xi!
.

We now want to maximize this as a function of λ. Since we have a product, it’s
usually easier to maximize the log of it, because log is monotonic and it’s usually
easier to work with sums than products:

log(L(λ)) =
∑
i

(−λ) +Xi log(λ)− log(Xi!).

By taking the derivative with respect to λ, we obtain

d

dλ
log(L(λ)) =

∑
i

−1 +Xi
1

λ
.

As usual, to find the extrema, we want this number to be zero. With a little algebra,
we see that

λ =
1

n

∑
i

Xi

is the value that works. We can check by taking a second derivative that this is
indeed a maximum. This is not surprising, and behaves much like our motivating
example above.

Here is the general approach to dealing with these problems, and it even extends
to the continuous case:

(a) Find the density function representing the likelihood. It might even be a
joint density function if you have many trials Xi as in the examples above.

(b) Consider the density function as a function of the parameter.
(c) Maximize the function with respect to the parameter.

Remark 2.1. Life isn’t perfect or easy. Sometimes MLEs don’t exist or are too
unrealistic. We won’t quite worry about this yet, but it’s good to know, because it
makes you think about ways around these shortcomings and anticipate things that
we’ll cover later in class.

Let’s see another example.

Example 2. We want to find the MLE for the variance from n IID normal variables.
Now, a normal distribution has two parameters, the mean µ and the variance σ2.
Suppose that we know the mean µ. Then the likelihood function is

L(σ2) =
∏
i

1√
2πσ2

exp

(
− 1

2σ2
(Xi − µ)2

)
.

Since we have a product, let’s take logs

logL(σ2) =
∑
i

−1

2
log(2πσ2)− 1

2σ2
(Xi − µ)2.

The derivative of this is ∑
i

− 1

2σ2
+

1

2σ4
(Xi − µ)2,
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so we should set

σ2 =
1

n

∑
i

(Xi − µ)2

as expected.
In practice, if you did not know the µ and σ2 in the normal distribution, we

would first try to find the MLE for µ because it doesn’t depend σ2, then use the
information to find to σ2.

Remark 2.2. If you want to maximize a function of one variable over R or (0,∞),
make sure that it doesn’t take its maximum at zero, or as tends to 0, or as it tends
to ∞. Cover your bases.

3. Estimators

Suppose that you want to find the value of some function g of a parameter in
your distribution. We can use estimator functions of random variables from that
distribution to estimate the value of the function g.

In general, if we observe random variables X1, X2, . . . , Xn whose joint density
function depends on unknown parameters θ1, . . . , θk, then a good estimator T =
T (x1, . . . , xn) of, say, θ1, based on the observed values x1, . . . , xn, is a T such that
the estimation error

T − θ1
is “small,” that is, so that T1 is close to θ most of the time. There are several ways
to measure this closeness, and we will start with the most basic one.

3.1. Definitions. Since we are using an estimate, it’s a good idea to have some
sort of measurement of how accurate your estimator is. The most basic way of
measuring this is to consider the mean squared error (MSE), which is defined
as follows.

Let T (X) be an estimator for g(θ) where θ is some unkown parameter. Then
the mean squared error is simply

E[(T (X)− g(θ))2].

It makes sense to take the expected value of this, because it’s a function of the
random variable X. We can also easily generalize this to multiple observation by
replacing X with a vector (Xi)i.

Remark 3.1. Why do we take the square? (And not just the number or a cube or
the exponential?) It’s the same reason that we take a square to find the variance.
It’s the simplest way to measure change as some sort of positive quantity.

That said, we are also interested in the quantity

E[T (X)− g(θ)],

called the bias, for obvious reasons. If this quantity is zero, regardless of θ, we say
that the estimator is unbiased. If we have an unbiased operator, it doesn’t mean
that our estimator guess correctly every time, but that in guessing, it doesn’t favor
a lower or higher value.
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Remark 3.2. A warning! The best estimator is not always unbiased. This is fairly
counterintuitive, so it is something you need to watch out for. This might not
make sense now, but this concept should be clear after you work through some
calculations. To reiterate, sometimes a biased estimator gives you better estimates
than an unbiased one!

Example 3. It is always true that the sample mean Xi is an unbiased estimator
of the true mean. This is because

E[(1/n)
∑
i

Xi − µ] = (1/n)
∑
i

E[Xi]− µ

= µ− µ = 0.

However, the (MSE) of this estimator can change based on the distribution. For
example, if they follow the Poisson distribution as in our example above, we get

E

( 1

n

∑
i

Xi − µ

)2
 = E

 1

n2

(∑
i

Xi

)2
− 2 · 1

n
· µ
∑
i

E[Xi] + µ2.

= E

 1

n2

(∑
i

Xi

)2
− 2µ2 + µ2

= E

( 1

n

∑
i

Xi

)2
− µ2

= E[Y 2]− E[Y ]2

= Var(Y )

=
λ

n
.

where Y = (1/n)
∑
iXi.

Note the variance of a sum of independent variables is the sum of the variances,
and multiplying by a constant multiplies the variance by the square, so we are left
with a 1/n. This is good, since clearly the MSE of the sample mean should decrease
with n, because we should get better estimates with larger samples. Also note that
the MSE changes as the true value of λ changes.

Example 4. Suppose that we have n IID variables from the uniform distribution
on [0, θ]. It turns out that the MLE for θ is maxiXi. To see this, note that
the likelihood function is L(θ) = (1/θ)n if θ > maxiXi, and 0 otherwise. Since
maximizing the likelihood means minimizing θ, we make this as small as possible.

Remark 3.3. Note that this estimator is not unbiased, because it always guesses
high!

It turns out you can make our estimator unbiased by multiplying the max by
n/(n+ 1), but let’s take an approach that you might find useful on the homework.
Consider all estimators of the form cmaxiXi, and try to minimize the MSE.

The relevant expected value is

E[c2(max
i
Xi)

2 − 2cθmax
i
Xi + θ2] = c2E[(max

i
Xi)

2]− 2cθE[max
i
Xi] + θ2.
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Finding the first quantity requires finding the density of maxiXi. This is

d

dt
P (max

i
Xi < t) =

d

dt

(
t

θ

)n
=
(n
θ

)( t
θ

)n−1

.

Now, this only makes sense up to θ, but it turns to work out OK:

E[(max
i
Xi)

2] =

∫ θ

0

t2
ntn−1

θn
dt

=
n

θn

∫ θ

0

tn+1 dt

=
n

θn
· θ

n+2

n+ 2

=
n

n+ 2
θ2.

Similarly, E[maxiXi] = n
n+1θ. Therefore, the MSE of the estimator cmaxiXi is

c2
n

n+ 2
θ2 − 2cθ

n

n+ 1
θ + θ2 =

(
c2

n

n+ 2
− 2c

n

n+ 1
+ 1

)
θ2.

Therefore, we just minimize this with respect to c to get the estimator with the
smallest MSE, which you can check is n+2

n+1 . Since we can’t get rid of the multipli-
cation by θ in our MSE, we can just try and to minimize the remaining factor.


