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1. Introduction

Homework will be due Tuesday due to the holiday.
Some notes from when the course was taught a couple years ago are available

on the official course homepage, and they are certainly worth looking at, especially
because they contain additional worked examples..

2. Hypothesis Testing

We’re still trying to approach the same goal as last time. We want to approximate
the true value of some unknown quantity that we’re unable to figure out exactly
because of lack of resources, like finding the average number of steps a random
person takes in a day.

Now that we know about estimators, we’re going to move onto the next level of
sophistication. Here, we want to pick two hypotheses that encompass the whole
parameter space. For instance, suppose we have a discrete random walk on a line.

Suppose that we know that at time t, you land at 0 or 1. Then we can pick
hypotheses “I’m at 0” and ”I’m at 1.” We can also do this if we are not sure where
we will land, but we are interested in knowing whether or not we will be at 0. Then
we can divide the parameter space into “We’re at 0” and “We’re not at 0.”

Be careful to observe that the situation is not symmetric. We focus our test on
a particular event called the null hypothesis. Our goal with this procedure is to
either accept or reject the null hypothesis.

2.1. Terminology. There are a lot of new definitions to introduce here. It can
be a bit overwhelming at first, but it will become clear once you work through a
couple of examples.

Definition 2.1. Suppose that you are given a null hypothesis H0.
The probability of rejecting H0 when it is true (“false negative”) is called the

significance level and is usually denoted by α.
Let β be the probability of accepting H0 when it is false (“false positive”). Then

the quantity 1 − β is called the power of the test, and represents the probability
of correctly rejecting the hypothesis when it is false.

We often ask about the power “at” a value of the parameter we are trying to
estimate. This means that assuming that the true value of the parameter is given
(and that it is not in the null hypothesis), we calculate the probability β of rejecting
the null hypothesis, and then take 1−β, which corresponds to the probability that
it doesn’t happen.

The test statistic is the number that you compute from your data, like the
sample mean. In this language, the “test” is determining whether or not this
number lies within a certain range.
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To “determine critical values” for a test with a given test statistic T and sig-
nificance α means to find the values of T which should indicate acceptance or
rejection of the null hypothesis in such a way that the probability of rejecting the
null hypothesis when true is α.

To choose which hypothesis α gets to be the null hypothesis, a good rule of thumb
is to pick the one that you would want to favor when you are unsure. For example,
typically we set α to be small. Therefore, for statistics near the null hypothesis,
we will default to the null hypothesis. That is, it is the one you assume unless it is
proven wrong.

Remark 2.2. We can never accept the null hypothesis, we can only fail to reject
it. These are not the same. Much like how you can never prove something by just
giving examples of it, you can never prove that something is true, just that it not
being true is false.

It is often the case that you want to choose the “bad” thing as the null hypothesis
because the consequences of incorrectly assuming something is good are worse. (A
mnemonic for this principle: “You want H0 to have probability 0 of occurring.”)
For example, if we are testing a new drug to see if it is safe, the null hypothesis
should be “it’s not safe.” This way, we can control (and make small) the probability
of incorrectly rejecting the null (saying it’s safe incorrectly). This is clearly better
than choosing the alternative, because we want to be really sure that the new drug
does not result in deaths, lawsuits, etc.

2.2. The Algorithm.

(a) Pick a parameter that you are supposed to draw conclusions about.
(b) Choose a hypothesis and significance level.
(c) Choose a test statistic. (Often the likelihood ratio. We’ll get to this later.)
(d) Choose a rejection rule.
(e) Determine the constants in the rejection rule such that the significance level

is as given.

Now that we’ve built all that up, let’s look at the simplest example. This will
be our running example.

Example 1. Suppose that our test statistic is a single random variable with (µ, 1)-
normal distribution. Let’s set the null hypothesis as “µ = 0”, so the alternate is
“µ 6= 0.” What are the critical of X if we want α = 0.01?

So what do we need to do? We want to find C and D such that the probability
that X lies outside the range (C,D) is 0.01, given that the null hypothesis is true.
In other words, assume µ = 0. Then we can see that by setting C = −2.57 and
D = 2.57 gives us what we want, because P (|X| ≥ 2.57) ≈ 0.01.

For examples, involving more than a single trial, refer to the course notes.

3. Power

When we set the hypothesis, we can control the probability α, which is the
probability of a Type I error, that is, the probability of rejecting the null hypothesis
when it true. (A “False negative.”) However, in many cases you might also want
to reject the null hypothesis with reasonable probability when it is actually false.
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Later, we will talk about α-β specification, which gives us a method of showing
how to reject when the null is false. Here we will talk about how to determine the
power of a test.

Example 2. Suppose that the true value of µ is not 0, so ideally we would reject
the null hypothesis. Q: For a given true value of µ, what is the probability that we
do indeed reject? This is the power at µ.

We can even write down a formula for this probability. Assume that the true
mean in µ, and let ρ(µ) be the probability of rejecting the null hypothesis. Then

ρ(µ) = P (|X| ≥ 2.57 | X is (µ, 1))

= P (X < −2.57 | X is (µ, 1)) + P (X > 2.57 | X is (µ, 1))

= Φ(−2.57− µ) + (1− Φ(2.57− µ)).

In particular, note that the height of the power curve at 0 is α.

4. Likelihood Ratio

The question of what statistic to use is often difficult to answer. It turns out
that a very good statistic to use is the generalized likelihood ratio, which com-
pares how the probability under the null hypothesis and the probability under the
alternate of our observation. Namely, suppose that we have samples {Xi}ni=1 that
follow a distribution with density f(x; θ) and parameter θ. If L(θ) is the likelihood
function, then the likelihood ratio λ is

λ :=
maxθ∈ω L(θ)

maxθ∈Ω L(θ)
,

where ω is the set of θ values in the null hypothesis and Ω is the full set of θ values.
The generalized likelihood ratio test (GLR test) is the test which rejects the

null if λ is too small, that is, it represents “reject if λ < λ∗” where λ∗ is chosen so
that P (λ < λ∗ | null) = α.

Example 3. Let {yi}ni=1 be random samples from a normal pdf with unknown
mean µ and variance 1. Find the form of the generalized likelihood ratio test for
H0 : µ = µ0 vs. H1 : µ 6= µ0.

Solution. Our statistic will be the likelihood ratio. We first need to maximize the
likelihood function over the null parameter space ω. This is simple since ω = {µ0},
just a single point.

Next, we maximize the likelihood function over all possible values. However, we
have already done this, and the maximum occurs at the MLE! Therefore, the maxi-
mum likelihood function value occurs when we plug in the MLE into the likelihood
function. Recall that the MLE for the mean of a normal is the sample average yi.
The maximum likelihood function value occurs when we plug the MLE into the
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likelihood function:

λ =
maxµ∈ω L(µ)

maxµ∈Ω L(µ)

=

∏n
i=1

1√
2π

exp(− 1
2 (yi − µ0)2)∏n

i=1
1√
2π

exp(− 1
2 (yi − y)2)

= exp

(
1

2

n∑
i=1

((yi − y)2 − (yi − µ0)2)

)
Therefore, a good test would be to reject the null hypothesis if λ is small. How

should you think about this? To get a small value out of this, the expression inside
the exponential must be negative, which means that that many of the yi must be
far from µ0, which in turn implies that the µ0 is probably not the mean. �

5. (α, β) Specification

We want to control the significance α, but sometimes we want to set a value of the
parameter (colloquially called a “kill value” in some machine learning circles) in the
alternative hypothesis space and say that if the true value is close to this chosen
value, you want to make sure to reject the null hypothesis. This is surprisingly
useful in many different situations. Let’s see an example of this.

Example 4. Suppose that we have the distribution

fθ(x) =

{
θxθ−1, if 0 < x < 1

0, otherwise.

We want to find θ, or at least draw some conclusions about it. Our null hypothesis
H0 will be θ < θ0, so H1 is θ ≥ θ0. Suppose that we want a significance level
of α = 0.05 (this is a standard convention), but we also want the probability of
accepting the null (incorrectly) when θ = θ1 > θ0 to be small (say β = 0.05 as
well). This is our (α, β) specification.

There are three questions that we need to answer before we can complete our
analysis. How many samples do we need to take? What should our θ0 be? What
should we choose as our statistic?

In this case, the “likelihood ratio” is∏
i

θ0X
θ0−1
i

Xθ1−1
i · θ1

=

(
θ0

θ1

)n(∏
i

Xi

)θ0−θ1
.

Remark 5.1. WARNING. This is not the GLR defined above. To simplify things,
we’ve just put the alternate hypothesis on the bottom (not the max over all possible
parameters). We are using this statistic because it is essentially the same as the
GLR, but makes for a slightly simpler calculation and hence a shorter explanation.
I recommend that you try and use the standard GLR as a default option for test
statistic if you don’t have any more information about the problem.

Note that we can form a bijection between our modified likelihood ratio and∏
iXi, so we will choose this product as our test statistic. However, since θ1 > θ0,

this is an order-reversing bijection. In other words, we will reject the null if our
statistic is larger than a constant C.
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Now, the distribution of
∏
iXi is not easy to analyze. However, let’s take the

log and define our test function

T (Xi) =
∑
i

log(Xi).

We haven’t made analyzing the distribution inherently easier, but now we can
use the normal approximation, assuming n is fairly large, by the Central Limit
Theorem. We need to find the mean and variance of log(Xi). By integration by
parts, we find that the mean is

E(log(Xi)) =

∫ 1

0

log(x)θxθ−1 dx = −1

θ
.

Similarly, we obtain

E(log(Xi)
2) =

∫ 1

0

log(x)2θxθ−1 dx =
2

θ2
.

Therefore,

Var(log(Xi)) = E(log(Xi)
2)− E(log(Xi))

2 =
2

θ2
− 1

θ2
=

1

θ2
.

We can then approximate the distribution of
∑
i log(Xi) by a normal (n(− 1

θ ), nθ2 )
distribution. This holds for any θ, so we now have two equations: for α we have

P (reject|null) = P (
∑
i

log(Xi) > C | null) < 0.05

and from β we have

P (
∑
i

log(Xi) < C|θ = θ1) < 0.05.

Our two equations have the unknowns n and C, which we can solve for any two
particular θ values.

For instance, suppose that θ0 = 1/4 and θ1 = 3/4. Then the null distribution is
(approximately) N(−4n, 16n), and the distribution for θ1 is N(−(4/3)n, (16/9)n).
Therefore,

P (
∑
i

log(Xi) > C|null) ≈ 1− Φ

(
C + 4n

4
√
n

)
and

P (
∑
i

log(Xi) < C|θ = θ1) ≈ Φ

(
C + (4/3)n

(4/3)
√
n

)
.

Note that we need to find Φ−1. We can try to just look this up, but a better way
is to use Φ−1 to get two equalities for C, and then solve for n. That is, from the
first and second equation respectively, we obtain

C = (4
√
n)Φ−1(1− 0.05)− 4n

and
C = (4/3)

√
nΦ−1(0.05)− (4/3)n.

Setting these equal, we get

(4 + (4/3))Φ−1(0.95) = (4− (4/3))
√
n,

which gives us n = (2Φ−1(0.95))2 = 10.82. In other words, we need about 11 trials
to be able to satisfy this (C turns out to be about −21.6).


