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1. Linear Regression

Linear regression is probably one of the most important things to come out of
the study of linear algebra. However, it is deceptively named. You can use “linear”
regression to fit not just lines, but even polynomials or functions or even generalized
functions, if you want to get fancy.

Nothing here is too complicated. You could have done all of this last year in
Math 1b. Here’s the setup.

Suppose that we have n data points (x1, y1), . . . , (xn, yn). We want to find a line
β1x+ β01 that best fits our data. Namely, we want to find βi such that

x1 1
x2 1
...

...
xn 1


[
β1
β2

]
=


y1
y2
...
yn


Let M denote the left-most matrix.

However, in most cases, we can’t solve this precisely, because the system is
overdetermined. Namely, the image of M has dimension at most 2, but the range
may have arbitrarily many dimensions.

So the world is not perfect and life is not easy. But we want to find a β vector
that is as close as possible to the y-vector. However, linear algebra has already
provided given us the answer to this question. Namely, the closest vector is the
projection of y onto the column space of M . This is essentially the definition of
projection onto a vector, but if you’ve forgotten what it means, look it up! We even
have a nice formula for the projection, which is great, because it would be tedious
to try and compute it by hand (e.g. by an explicit Gram-Schmidt computation).

The formula for the projection ŷ is

ŷ = M(MTM)−1MTy.

Therefore, the formula for the coefficients of the projection with respect to the basis
given by the columns of M is

β̂ = (MTM)−1MTy.

Remark 1.1. It is important to state that all of these formulas are in the case of
vector spaces over R. There are slightly different formulas over other base fields.
For instance, if the vector spaces were over the complex numbers C, we would want
to use the adjoint matrix M∗ instead of the transpose MT .

OK. That’s great, Brian. But why are we learning this now instead of as a
homework exercise last year? It’s because the right way to view this situation is by
interpreting the situation probabilistically, with distributions.
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1.1. The Probabilistic Viewpoint. The way you want to think about this situ-
ation above is to imagine that these some vector β that will solve our equation ex-
actly, but that some trickster (like Mother Nature or entropy) has inserted N(0, σ2)
errors into the observation vector y. So you figured this out, but you still want to

know: How close did the observed coefficients β̂ come to the true coefficients?
Suppose that we have n observations and r regression coefficients (i.e. the length

of the β-vector). Then

cβ − cβ̂
s
√
c(MTM)−1cT

∼ tn−r

where s =
√

RSS
n−r and c is any vector of length r. (Recall RSS = “residual sum of

squares” =
∑n
i=1(yi − ŷi)2.) For instance, if we wanted to find out about the first

entry β0, we might want to use c = (1, 0, . . . 0).

Remark 1.2. Sometimes residual sum of squares (RSS) is also called the sum of
squared residuals (SSR). They are the same thing.

I’m going to give a rundown of some of the more important facts and definitions.
Refer to the book or to the posted lecture notes for details. (I especially recommend
the notes on the class website.)

We can use the SSR to produce an unbiased estimator of the error variance σ2:

σ̂2 = s2 =
||y− ŷ||2

n− r
.

We have

E(cβ̂) = cβ

and so

cβ ∼ N(cβ, c(MTM)−1cTσ2).

Another good thing to know is that

Var(cβ̂) = c(MTM)−1cTσ2.

It is so useful that we make it a definition.

Definition 1.3. The standard error of an estimate cβ̂ is c(MTM)−1cT s2. (Note
the s instead of σ.)

The standard error of one the coefficients βi is just the standard error of cβ̂
where c = ei, that is, where c has a 1 in the ith coordinate and zeroes elsewhere.

Following the convention in the book, we will usually write s2x for the variance

of x and s2
β̂i

for the standard error or β̂i. Therefore, the coefficient of multiple

determination in the book is

R =
s2y − s2ε̂
s2y

.

In other words, we take the variance of y, subtract the variance of the observed
errors, and then divide this difference by the variance of y.

We often refer to something called a standard statistical model, and by this,
we just mean a model that has the following two properties: (1) the equation is
linear and (2) the errors are of mean zero and have the same variance.
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Given our information, we can also guess a new observation. Suppose that we

want to know yn+1 = cβ. The obvious guess for this is just cβ̂ itself, but how good
is this guess? We have

yn+1 − cβ̂
s
√

1 + c(MTM)−1cT
∼ tn−r

and so we can use this to determine confidence intervals or run hypothesis tests.

Example 1. We want to fit a polynomial of degree 2 to the data points:

x y
1 3.92296
2 9.107
3 20.1724
4 37.0409
5 60.0193
6 89.0312
7 124.228
8 165.182
9 211.967
10 264.492

Our model here is y = β1x
2 + β2x+ β3. Our matrix here is

M =



1 1 1
4 2 1
9 3 1
16 4 1
25 5 1
36 6 1
49 7 1
64 8 1
81 9 1
100 10 1


with the first column corresponding to β1, the second to β2, and the third to β3.
However, note that linear regression doesn’t “know” about the difference between
x2 and x columns, even though the pattern is obvious to us. We then calculate our
guesses

β̂ = (MTM)−1MTy =

 2.98209
−3.82872
4.76363

 ŷ =



3.917
9.03456
20.1163
37.1622
60.1728
89.1466
124.085
164.988
211.855
264.686


Therefore, the RSS is

RSS =
||y− ŷ||2

10− 3
= 0.155078.
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Setting c = [1, 0, 0], we get s
√
c(MTM)−1cT = 0.00674889, so a 90% confidence

interval for β1 is

β̂1 ± 0.00674889t7,0.95 = [2.96931, 2.99488]

and similarly, we calculate the one for β3 as

β̂3 ± 0.182395t7,0.95 = [4.41807, 5.10919].

Note that the interval for β3 is larger, because β1 affects the output value by much
more, so we guess it more accurately.

The true polynomial for this data is actually 3x2−4x+5. Thus, we see that our
90% confidence interval is wrong! This does indeed give a 90% interval, but such
an interval has no guarantee of getting the right answer.

2. Chi-Squared (χ2) Test

We use a χ2-test to test to see if the data does indeed follow a given distribu-
tion. There are two main uses for this: to test for goodness of fit, and to test for
independence.

2.1. Goodness of Fit. You first want to divide your data into bins, following
whatever scheme is most appropriate. We then apply the following method.

(a) Set H0 as “data is normal” (or Poisson or exponential, etc.) We’ll assume
normal here, but you can replace all subsequent instances of “normal” with
any other distribution.

(b) Given that the distribution is normal, compute the expected number Ei for
for each bin with sample mean and standard deviation.

(c) Find the value

X2 =

n∑
i=0

(Oi − Ei)2

Ei

where Oi is the observed number in the bin i. The value X2 is called the
chi-square statistic and we assume that it is distributed as a chi-square
distribution with n − m − 1 degrees of freedom, where m is the number
of parameters being estimated. For instance, with a normal distribution,
m = 2.

(d) Find the probability that a chi-squared random variable with n − m − 1
degrees of freedom is larger than X2. This is the p-value and thus for any
α > p, we reject the null hypothesis that the data is normal.

Example 2. This is the example from p. 344 in the book, chosen because it’s a
good example of something that doesn’t follow the normal distribution. (You have
questions on the homework for the normal case.)

Suppose we have clumps of bacteria, and believe that the number of clumps per
square is Poisson. We’ll try and use a χ2 test to verify this.

No. per square 0 1 2 3 4 5 6 7 8 9 10 19
Frequency 56 104 80 62 42 27 9 9 5 3 2 1

The sample mean in this case is the average

0 · 56 + 1 · 104 + · · ·+ 19 · 1
400

= 2.44

Under this mean, we expect the following counts
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No. per square 0 1 2 3 4 5 6 ≥ 7
Observed 56 104 80 62 42 27 9 20
Expected 39.4 85.1 103.8 84.4 51.5 25.1 10.2 5.0
(O−E)2

E 12.8 4.2 5.5 5.9 1.8 0.14 0.14 45.0

The total test statistic is

X2 =
∑ (Oi − Ei)2

Ei
= 75.4.

Since there are 8 bins and we are estimating one parameter (the mean of the
Poisson), we have 8− 1− 1 = 6 degrees of freedom. If Y ∼ χ2

6, then

P (Y > 75.4) ≈ 3.1× 10−14

so it is extremely unlikely that this data is Poisson. However, if you just look at
the table, you might believe that the data is Poisson, because the numbers aren’t
particularly far apart especially near the mean. Nevertheless, there were too many
observed counts at the higher and lower ends that deviated from a Poisson-like
distribution, and so affected our final conclusion.

2.2. Test of Independence. What we want to do here is to take a table of data
and decide whether the two axis labels (like eye color and hair color on your home-
work set) are independent. The null hypothesis is that they are independent. There
are step-by-step instructions on page 522, but here is the gist of the argument. If
we let nij be the matrix of observations with I rows and J columns, then the
chi-square statistic in this case is

X2 =

I∑
i=1

J∑
j=1

(nij − ni∗n∗j/n)2

ni∗n∗j/n

where ni∗ =
∑J
j=1 nij sums over all the j or a fixed i, and similarly for n∗j , and

where n is the total number of observations.
Here, we have (I − 1)(J − 1) degrees of freedom. Given a table of data, we just

compute the above things and see what the probability that a chi-squared statistic
with (I − 1)(J − 1) degrees of freedom is larger than X2, and this gives you a
p-level. You then reject the null hypothesis that the two axes are independent at
significance level α for any α > p.

Example 3. We have the following table of data of heights of father and child,
split into three categories: short, average, and tall.

child short average tall
father short 14 11 8
average 11 11 9
tall 6 10 12

We want to know: are the heights of fathers and their children independent? We
calculate

X2 = 3.81436.

Since I = J = 3, we have 4 degrees of freedom. Our p-value is 1 − F (3.81436),
where F is the CDF of the χ2 distribution. It turns out the p-value is 0.431712.
This is not small, so we probably should not reject the hypothesis that the father’s
height and the child’s height are independent.


