
MA 8, WEEK 1: PROOFS AND PROOF TECHNIQUES

1. What is a Proof?

Every field of study has a way of showing that something is “true”
in their field. For instance, in English literature, if you wanted to prove
that the failed love story in Fitzgerald’s Great Gatsby is a reflection of
the author’s disillusionment with the “American Dream,” you would
write an essay that quoted the story itself, his other texts, biographies,
and maybe some of his letters. In physics, if you wanted to prove
that neutrinos don’t go faster than the speed of light, you’d write a
paper that cited relevant theories (like general relativity and quantum
mechanics) that support, as well as appropriate measurements.

In the same fashion, mathematical proofs are how mathematicians
go about showing that something is true. In structure, a mathematical
proof is very similar to a short essay or paper; you start by making a
claim, and then go about assembling a series of facts that demonstrate
that this claim is true. The only distinction between mathematics and
other fields, roughly speaking, is that the only admissible things in
a mathematical proof are (1) things we have previously proven to be
true, and (2) axioms: i.e. things we’ve decided to assume are true.
The consequence of this is that once a mathematical statement has
been proven, it cannot be disproven: unlike in the sciences, where new
physical evidence and collected data can simply render a previous result
moot, mathematical proofs are immutable. This is the deal with the
devil that mathematics made: we have gained the ability to deal with
absolute truths, in exchange for never being able to make statements
about reality (as reality is, for the most part, not admissible in proofs.)

In fact, if you think about it, it’s a miracle in itself that mathematics
works to describe the world. Why should the laws of physics be written
in the language of mathematics? Why does the same calculus that we
use to plot trajectories of falling apples also work to describe celestial
movements and subatomic phenomena?

This week, we’re going to study the art of proof. This is a subject
that could easily take an entire textbook to develop, but we limit our-
selves to a few pages, since the basics are as easy to grasp as any other
good game.
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1.1. Words and Proofs. Here’s something you should never do in
proofs:

Proof.

√
xy ≤ x + y

2

xy ≤ (x + y)2

4
4xy ≤ (x + y)2

4xy ≤ x2 + 2xy + y2

0 ≤ x2 − 2xy + y2

0 ≤ (x− y)2,

which is true. �

Why is the above result awful? There are at least three reasons.
First and foremost, there are no words! In fact, we have absolutely no
idea what we’re even proving, nor any idea what x and y are supposed
to be, nor any idea how the equations we’ve drawn are linked together.
So: never do this! Whenever you’re writing a proof, use words.
Always tell your reader what you’re proving, how you’re going about
making said proof, and how you’re linking together any of these steps.

For example, the mess above is supposed to be a proof of the arithmetic-
geometric mean inequality, which is the following claim:

Theorem 1. (AM-GM) For any two nonnegative real numbers x, y,
we have that the geometric mean of x and y is less than or equal to the
arithmetic mean of x and y: in other words, we have that

√
xy ≤ x + y

2
.

With this stated, we can then see the second flaw in the cautionary
example above: it’s not even a proof of the result! The failed proof
above starts off by assuming that the result is true, and then deduces
a statement that we already know to be true (any squared number is
nonnegative.) This does not, by any means, prove the statement we
are claiming!

Remark 2. Just because you somehow end up with a statement that
looks true doesn’t mean that the reasoning behind it was valid. For
example, if we assume that 1=2, we can easily deduce a true statement
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by multiplying both sides by 0:

1 = 2

⇒0 · 1 = 0 · 2
⇒0 = 0.

Does this prove 1=2? No!

As we stated above, proofs can only take in as admissible evidence
things we already know to be true. To prove a statement is true,
you can’t just assume that the statement is true.

OK, so we messed up. What can we do now? Well, instead of starting
with the result and deducing a true thing, we should start with some
true things and then deduce that the AM-GM is a consequence of these
true things. We present a fixed and fully functional proof here:

Theorem 3. (AM-GM) For any two nonnegative real numbers x, y,
we have that the geometric mean of x and y is less than or equal to the
arithmetic mean of x and y: in other words, we have that

√
xy ≤ x + y

2
.

Proof. Take any pair of nonnegative real numbers x, y. We know that
any squared number is nonnegative: so, in specific, we have that (x−y)2

is nonnegative. If we take the equation 0 ≤ (x− y)2 and perform some
algebraic manipulations, we can deduce that

0 ≤ (x− y)2

⇒ 0 ≤ x2 − 2xy + y2

⇒ 4xy ≤ x2 + 2xy + y2

⇒ 4xy ≤ (x + y)2

⇒ xy ≤ (x + y)2

4
.

Because x and y are both nonnegative, we can take square roots of
both sides to get

√
xy ≤ |x + y|

2
.
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Again, because both x and y are nonnegative, we can also remove the
absolute-value signs on the sum x + y, which gives us

√
xy ≤ x + y

2
,

which is what we wanted to prove. �

1.2. Pictures and Proofs. Words and symbols are not the only tool
in proofs! In fact, well-chosen and drawn diagrams can often illustrate
an idea that would otherwise take pages of text to describe. Pictures
alone are rarely proofs: words are almost always necessary to explain
what’s going on, and you’ll have to do some calculations to solve almost
any problem. However, a well-placed picture can often be invaluable,
as we demonstrate in the following example:

Proposition 4. For any n ∈ N, we have the following identity:

n∑
k=1

1

4k
=

1− (1/4)n

3
.

Proof. Consider the following construction:

(1) Start by taking an equilateral triangle of area 1.
(2) By picking out the midpoints of its three sides, inscribe withinin

this triangle a smaller triangle T1. Color this triangle green.
Also, notice that by symmetry this green triangle has area 1

4
, as

drawing it has broken up our original triangle into four identical
equilateral triangles.

(3) Take the “top” triangle of the three remaining white triangles,
and repeat step 2 on this triangle. This creates a new green
triangle, T2, with area 1

4
of the white triangle’s area: i.e. 1

4
· 1
4

=
1
16

.
(4) Keep repeating this process until we have drawn n green trian-

gles, as depicted below:
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h0

h1

h2

hn

T1

T2

(5) What is the combined area of all of the green triangles? On

one hand, we’ve seen that the area of each Tk is just
(
1
4

)k
, as

T1 had area 1
4

and each green triangle after the first had area 1
4

of the green triangle that came before it. Summing over all of
the green triangles, this tells us that

Area(Green) =
n∑

k=1

1

4k
.

(6) On the other hand, as shown in our picture, we can see that
between height h0 and h1, green triangles are taking up precisely
a third of the area of our original area-1 triangle. Similarly,
green triangles are taking up a third of the area from h1 to h2,
h2 to h3, and so on/so forth all the way to hn, after which there
are no more green triangles.

Therefore, the total area of the green triangles is just a third
of the area of our original triangle that lies between height h0

and hn. Because the area of the last tiny white triangle at the
top is (by construction) equal to the area of Tn, i.e.

(
1
4

)n
, we

then have that

Area(Green) =
1

3
·
(

1−
(

1

4

)n)
.

By combining these two expressions for the total area of the green
triangles, we have proven that

n∑
k=1

1

4k
=

1− (1/4)n

3
.

�
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1.3. Avoiding Overkill in Proofs. One last thing to mention in
mathematics (that is particularly applicable to Techers) is the following
bit of warning about “overkill” in proofs. Many of you have seen a lot
of mathematics before: consequently, when you’re going through this
course, you’re often going to be tempted to use tools you’ve seen in
other classes to attack problems. Don’t do this!

There are lots of reasons why we want you to not use any results not
proven either by yourself on the homeworks, by the professor in class,
or by the TAs in your recitations: one trivial one is that in a modern
calculus class, pretty much everything you’ll do will have been proven
somewhere or other, and if you could just cite all of mathematics you’d
never have to do any work at all! Another more important reason is
that proofs that involve this kind of “overkill” are usually not very
illuminating ! For example, consider the following cute proof.

Theorem 5. 3
√

2 is irrational.

Proof. Recall Fermat’s Last Theorem, which says that

If n is a natural number ≥ 3, the equation

an + bn = cn

has no solutions with a, b, c ∈ N.

We’re going to use this to. . . prove that 3
√

2 is irrational. We proceed
by contradiction: i.e. assume, for the moment, that 3

√
2 is rational. We

can write it as some ratio p
q
, where p, q ∈ N. By cubing both sides, we

get

p3

q3
= 2;

multiplying both sides by q3 then gives us

p3 = q3 + q3.

But Fermat’s last theorem says that such a thing cannot exist! Since
Fermat’s last theorem is true, we have arrived at a contradiction.
Therefore, 3

√
2 cannot be a rational number, and is thus irrational. �

This proof works completely! Technically, it is also valid. However,
by reading it, we really haven’t gained any better insights into what
makes a number irrational. Good proofs illuminate the question at
hand: not only do they rigorously show that the statement in question
is true, they also shed light on how the concepts involved in the proof
work, and how the reader might go about attacking similar problems.
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2. The Technique of Proof

In this section, we study four basic methods of proof. In all cases,
we want to prove that “P => Q”.

2.1. Direct Proofs. Direct proofs are, as the name suggests, the most
obvious way to show that “P => Q”. Namely,

(1) Assume that P is true.
(2) Use P to show that Q must be true.

Here’s an example of a direct proof.

Proposition 1. If m and n are consecutive natural numbers, then
m + n is odd.

Proof. Since m and n are consecutive natural numbers, we can write
n = m + 1.Therefore, we have

m + n = m + (m + 1) = 2m + 1.

Since m is a natural number, 2m + 1 = m + n is odd. �

2.2. Proof by Contradiction (Reductio ad absurdum, if you
want to be fancy). Here we want to prove “P ⇒ Q” in a slightly
funny way.

(1) Assume that P is true.
(2) Assume that ¬Q (“not Q”) is true.
(3) Use P and ¬Q to demonstrate a contradiction.

Here’s an example of this in action.

Theorem 2. There are two irrational numbers a and b such that ab is
rational.

“Proof with inner monologue”. We will prove our statement by contra-
diction. To do this, we first assume that the negation of our theorem
holds. In other words, we start off our proof by assuming the following
hypothesis:

There are no irrational numbers a and b such that ab is rational.

What do we do from here? Well, let’s try throwing in numbers we
know to be irrational into the above statement! Specifically, let’s try
setting both a and b equal to

√
2, which we know is irrational. Our

hypothesis then tells us that

√
2
√
2

is irrational.
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OK. What do we do now? Well, the only thing we really have is our
assumption, our knowledge that

√
2 is irrational, and our new belief

that
√

2
√
2

is also irrational. The only thing we can really do is pick

a =
√

2
√
2
, b =

√
2, and apply our hypothesis again. However, this will

work! On one hand, our we have that ab is irrational by our hypothesis.
On the other hand, we have that ab is equal to(√

2
√
2
)√2

=
√

2
√
2·
√
2

=
√

2
2

= 2,

which is clearly rational. This is a contradiction! Therefore, we know
that our hypothesis must be false: there must be a pair of irrational
numbers a, b such that ab is rational. �

Remark 3. An interesting quirk of the above proof is that it didn’t
actually give us a pair of irrational numbers a, b such that ab is rational!
It simply told us that either

•
√

2
√
2

is rational, in which case a = b =
√

2 is an example, or

•
√

2
√
2

irrational, in which case a =
√

2
√
2
, b =

√
2 is an example,

but it never actually tells us which pair satisfies our claim! This is
a weird property of proofs by contradiction: they are often noncon-
structive proofs, in that they will tell you that a statement is true or
false without necessarily giving you an example that demonstrates the
truth of that statement.

2.3. Proof by Contrapositive. When do you want to use a proof by
contrapositive? Sometimes, proving “P ⇒ Q” directly is tricky: maybe
P is a really subtle condition to start from, and we would prefer to start
working from the other end of this implication. How can we do this?

Via the contrapositive! Specifically, if we have a statement of the
form P =⇒ Q, the contrapositive of this statement is simply the
statement

¬Q⇒ ¬P .

The nice thing about the contrapositive of any statement is that
it’s logically equivalent to the original statement! For example, if our
statement was “all Techers are adorable,” the contrapositive of our
claim would be the statement “all nonadorable things are not Techers.”
These two statements clearly express the same meaning – one just starts
out by talking about Techers, while the other starts out by talking
about nonadorable things. So, if we want to prove a statement P =⇒
Q, we can always just prove the contrapositive ¬Q ⇒ ¬P instead,
because they’re the same thing! This can allow us to switch from
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relatively difficult starting points (situations where P is hard to work
with) to easier ones (situations where ¬Q is easy to work with.)

In summary, you can apply the technique of proof by contrapositive
as follows:

(1) Assume ¬Q.
(2) Use ¬Q to show that ¬P holds.

Remark 4. As you can see, proof by contrapositive is a close cousin of
the proof by contradiction. Indeed, one way to demonstrate contradic-
tion in Step (3) of the proof by contradiction is to show that both P
and ¬P hold, which cannot occur!

To illustrate this, consider the following example:

Theorem 5. If n ≡ 2 mod 3, n is not a square: in other words, we
cannot find any integer k such that k2 = n.

Proof. A direct approach to this problem looks hard. Basically, if we
were to prove this problem directly, we would take any n ≡ 2 mod 3 –
i.e. any n of the form 3m+2, for some integer m – and try to show that
this can never be a square. Basically, we’d be looking at the equation
k2 = 3m + 2 and trying to show that there are no solutions to this
equation, which looks pretty nasty.

Since we are mathematicians, when presented with a tricky-looking
problem, our instincts should be to try to make it trivial: in other
words, to attempt different proof methods and ideas until one seems to
“fit” our question. Let’s look at the contrapositive of our statement:

If n is a square, then n 6≡ 2 mod 3.

Equivalently, because every number is equivalent to either 0, 1, or 2
mod 3, we’re trying to prove the following:

If n is a square, then n ≡ 0 or 1 mod 3.

This looks much easier! – the initial condition is really easy to work
with, and the later condition is rather easy to check.

Now that we have some confidence in our ability to prove our theo-
rem, we proceed with the actual work: take any square n, and express
it as k2, for some natural number k. We can break k into three cases:

(1) k ≡ 0 mod 3. In this case, we have that k ≡ 3m for some m,
which means that k2 = 9m2 = 3(3m2) is also a multiple of 3.
Thus, k2 ≡ 0 mod 3.

(2) k ≡ 1 mod 3. In this case, we have that k ≡ 3m + 1 for some
m, which means that k2 = 9m2 + 6m + 1 = 3(3m2 + 2m) + 1.
Thus, k2 ≡ 1 mod 3.
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(3) k ≡ 2 mod 3. In this case, we have that k ≡ 3m + 2 for some
m, which means that k2 = 9m2+12m+4 = 3(3m2+4m+1)+1.
Thus, k2 ≡ 1 mod 3.

Therefore, we’ve shown that k2 isn’t congruent to 2 mod 3, for any k.
So we’ve proven our claim! �

2.4. Proofs by Induction. Sometimes, in mathematics, we will want
to prove the truth of some statement P (n) that depends on some vari-
able n. For example:

• P (n) = “The sum of the first n natural numbers is n(n+1)
2

.”
• P (n) = “If q ≥ 2, we have n ≤ qn.
• P (n) = “Every polynomial of degree n has at most n roots.”

For any fixed n, we can usually use our previously-established meth-
ods to prove the truth or falsity of the statement. However, sometimes
we will want to prove that one of these statements holds for every value
n ∈ N. How can we do this?

One method for proving such claims for every n ∈ N is to use math-
ematical induction.

(1) Prove our statement in the base case, that is, show that P (1)
is true.

(2) (Induction step) Assume that P (k) holds, and use this show
that P (k + 1) holds.

The intuitive reason why this works is as follows. Since we’ve es-
tablished the base case, by applying the induction step over and over
again, we see that

P (1)⇒ P (2)⇒ P (3)⇒ · · ·
and so prove our statement for all n ∈ N. The real reason why this
works is that the principle of mathematical induction is rooted in the
well-ordering principle, which was briefly discussed in class.

You’ll get a lot of practice with this proof technique on the home-
work, but just so you’re not confused, we’ll go through a very simple
application of proof by induction.

Proposition 6. For all n ∈ N, we have

S1(n) = 1 + 2 + · · ·+ n =
n∑

j=1

j =
n(n + 1)

2
.

Proof. We will prove our statement by induction on n.

Base case: If n = 1, then S1(n) = 1 and 1(1+1)
2

= 1, so our result
holds in this case.
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Inductive step: Assume that our statement holds for n = k. (This
called the induction hypothesis.) We want to show that our state-
ment holds for n = k + 1. By the induction hypothesis,

S1(k) = 1 + 2 + · · ·+ k =
k(k + 1)

2
.

Adding k + 1 to each side, we get

1 + 2 + · · ·+ k + k + 1 =
k(k + 1)

2
+ k + 1

=
k2 + k + (2k + 2)

2

=
k2 + 3k + 2

2

=
(k + 1)(k + 2)

2
.

Hence, S1(k + 1) = (k+1)(k+2)
2

as desired. By the principle of mathe-
matical induction, our formula holds for all n ∈ N. �


	1. What is a Proof?
	1.1. Words and Proofs
	1.2.  Pictures and Proofs
	1.3. Avoiding Overkill in Proofs

	2. The Technique of Proof
	2.1. Direct Proofs
	2.2. Proof by Contradiction (Reductio ad absurdum, if you want to be fancy)
	2.3. Proof by Contrapositive
	2.4. Proofs by Induction


