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1. Review Questions

Example 1. Prove that
∑

1
p diverges, where the sum extends over all prime num-

bers.

Proof. Let pi denote the ith smallest prime number and let P = {p1, p2, . . .}1.
Suppose for contradiction that the sum

∑
p∈P

1
p converges. Then there exists an

integer k such that ∑
i≥k+1

1

pi
<

1

2
.

Say p1, . . . , pk are small primes, and that pk+1, pk+2, . . . are large primes. Let N be
a positive natural number. Then ∑

i≥k+1

N

pi
<
N

2
.

Let Ns be the number of positive integers n ≤ N that have only small prime factors
and let N` be the number of positive integers n ≤ N that have at least one large
prime factor, so

Ns +N` = N.

The number of positive integers n ≤ N divisible by a prime p is [N/p] (also com-
monly denoted bNp c), that is, the largest integer less than N/p. Therefore,

N` ≤
∑
i≥k+1

bN
pi
c ≤

∑
i≥k+1

N

pi
<
N

2
.

A number n ≤ N with only small prime divisors has the form

n = anb
2
n

where an consists of the square-free part of n, so

an = pε11 · · · p
εk
k

where εi is either 0 or 1. Thus, there are precisely 2k possible square-free parts.
Furthermore,

bn ≤
√
n ≤
√
N.

There are at most
√
N choices for bn, so Ns ≤ 2k

√
N .

Choose N so that 2k
√
N ≤ N

2 (e.g. N = 22k+2). Then

N = Ns +N` <
N

2
+
N

2
= N

a contradiction. �

1However, note that we don’t assume a priori that there are infinitely many primes.

1
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Remark 1. You are, of course, familiar with the fact that the harmonic series
∑
n

1
n

diverges. However, this proof shows that even if you throw out all the composite
numbers n from the series, the sum still diverges, in particular the primes forms a
still-substantial subset of the positive integers. Contrast with examples like

∑
n

1
2n ,

which we know converges. The distribution of primes is quite mysterious and we
still don’t understand it completely. For instance, there is an old conjecture called
the “twin prime” conjecture, which says that there are infinitely many pair of prime
numbers p, p + 2. Examples of twin primes include (3,5), (11, 13), etc. However,
one would expect such phenomena to decrease as the numbers get larger. However,
the twin prime conjecture says that despite this, there will always be twin primes as
you go further and further out on the number line. There has recently (this year)
been a lot of progress on answering this question.

As an aside, note that the above proof also demonstrates (in a cute way) that
there are infinitely many prime numbers.

Example 2. Suppose that the coefficients of the power series
∑
anz

n are integers,
infinitely many of which are distinct from zero. Prove that the radius of convergence
is at most 1.

Proof. Since infinitely many coefficients of
∑
anz

n are nonzero integers, for every
N , there is some n > N such that |an| ≥ 1, and so

lim sup
n→∞

|an| ≥ 1.

Since k > 1 implies that k1/n > 1 for any real k, we have

lim sup
n→∞

n
√
|an| ≥ 1.

The quantity on the left side is the reciprocal of the radius of convergence R
(Hadamard’s formula), so

1

R
≥ 1

and hence 1 ≥ R. In other words, the radius of convergence is at most 1. �

Example 3. Suppose that {an} is a Cauchy sequence in R, and that some subse-
quence {an`

} converges to a point L ∈ R. Show that the full sequence {an} also
converges to L.

Proof. This is just a slight variant of the fundamental fact that if a sequence con-
verges to a limit, then any subsequence converges to the same limit. However, let’s
try and walk through a formal proof of this.

Let ε > 0. Since {an} is a Cauchy sequence, there is some N such that for
n,m > M , we have

|an − am| <
ε

2
.

Since the subsequence {an`
} converges to L, there is some M such that i > M

implies that

|ani
− L| < ε

2
.

Therefore, for i, n > max(M,N), we have

|L− an| ≤ |L− ani
|+ |ani

− an| =
ε

2
+
ε

2
= ε.

Hence, {an} converges to L as n→∞, as desired. �
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Example 4. Suppose that

C0 +
C1

2
+ · · ·+ Cn−1

n
+

Cn
n+ 1

= 0,

where C0, . . . , Cn are real constants. Show that the equation

C0 + C1x+ · · ·+ Cn−1x
n−1 + Cnx

n = 0

has at least one real root between 0 and 1.

Proof. Consider the function

f(x) = C0x+
C1x

2

2
+ · · ·+ Cnx

n+1

n+ 1
.

We have f(1) = 0 by our relation between the Ci’s. Also, f(0) = 0. Since f(x) is
a polynomial, f(x) is differentiable with derivative

f ′(x) = C0 + C1x+ C2x
2 + · · ·+ Cnx

n.

By the Mean Value Theorem, since f(0) = f(1) = 0, we have f ′(x) = 0 for some
x ∈ (0, 1). Therefore,

∑
Cnx

n has a real root in the interval (0, 1), as desired. �

Example 5. Suppose that f is defined and differentiable for every x > 0, and
f ′(x)→ 0 as x→ +∞. Define

g(x) = f(x+ 1)− f(x).

Prove that g(x) = 0 as x→ +∞.

Proof. Let ε > 0. Since f ′(x) → 0 as x → +∞, there exists some N such that if
x > N , then |f ′(x)| < ε. We have

g(x) = f(x+ 1)− f(x) =
f(x+ 1)− f(x)

(x+ 1)− x
= f ′(t)

for some t ∈ (x, x+ 1) by the Mean Value Theorem. Since this property holds for
all x, choose x > N , so that we have t > x > N . Now, we have

|g(x)| = |f ′(t)| < ε,

and so |g(x)| < ε for all x > N . Therefore, g(x)→ 0 as x→ +∞, as desired. �

Example 6. If f(x) = 0 for all irrational x and f(x) = 1 for all rational x, prove
that f is not integrable on [a, b] for any a < b.

Proof. Let P be an arbitrary partition of [a, b]. Let n = |P |−1, so n is the number
of intervals in the partition P . Every interval will contained at least one rational
number and at least one irrational number (e.g. by the pigeonhole principle, since
the cardinality of any nonempty open interval is uncountable). Then the lim sup
M of f on any interval is 1, while the liminf m of f on any interval is 0, and so

U(P, f) =
∑

Mi∆(xi) =

n∑
1

1(xi+1 − xi) = xn+1 − x0 = b− a

and

L(P, f) =
∑

m∆(xi) =

n∑
1

0(xi+1 − xi) = 0.
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Since P is an arbitrary partition, these properties holds for all partitions, and
therefore,

sup
P
L(P, f) = 0, inf

P
U(P, f) = b− a.

Hence, f is not integrable. �

Example 7. Let {an} be the Fibonacci sequence,

a1 = a2 = 1, an+2 = an + an+1.

(1) If rn = an+1

an
, then rn+1 = 1 + 1

rn
.

Proof. We have

rn+1 =
an+2

an+1
=
an+1 + an
an+1

= 1 +
an
an+1

= 1 +
1

rn
.

�

(2) Show that r = limn→∞ rn exists, and r = 1 + 1
r . Conclude that r =

(1 +
√

5)/2.

Proof. If r = limn→∞ rn exists, then

r = lim
n→∞

rn = lim
n→∞

1 +
1

rn
= 1 +

1

limn→∞ rn
= 1 +

1

r

and so

r =
1 +
√

5

2

since clearly r > 0.
To prove the limit actually exists, note that if rn < (1 +

√
5)/2, then

r2n − rn − 1 < 0 and so

rn <
2rn + 1

rn + 1
= rn+2.

Thus, r1 < r3 < r5 < · · · < 2 so limn→∞ r2n+1 exists. Similarly, limn→∞ r2n
exists. Moreover, the equation rn+2 = (2rn + 1)/(rn + 1) leads, as before,

to the fact that both limits are (1 +
√

5)/2. �

(3) Show that
∑∞
n=1 has radius of convergence 2/(1 +

√
5).

Proof. The limit

lim
n→∞

|an+1z
n+1|

|anzn|
= lim
n→∞

an+1

an
|z| = 1 +

√
5

2
|z|

is < 1 for |z| < 2/(1 +
√

5) and > 1 for |z| > 2/(1 +
√

5). �
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2. More Review Problems

Question 1. Use Taylor polynomials to approximate sin(0.8) to within 10−4 of its
actual value.

Solution. Recall that the Taylor series for the function f(x) = sinx about 0 is

sinx =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!

Let’s denote by T2n+1 the (2n+ 1)-degree Taylor polynomial of sinx, i.e.

T2n+1 =

2n+1∑
k=0

(−1)k
x2k+1

(2k + 1)!

As usual, R2n+1 will denote the (2n + 1)-degree remainder term. Hence, sinx =
T2n+1(x) +R2n+1(x). We want to approximate the value of sin(0.8) to within 10−4

of its actual value. Hence, we would like to find n for which |R2n+1(0.8)| < 10−4.
By Taylor’s theorem we have

|R2n+1(x)| =
∣∣∣∣∫ x

0

f (2n+2)(y)

(2n+ 1)!
(x− y)2n+1dy

∣∣∣∣
Since f(x) = sinx, |f (2n+2)(y)| ≤ 1 for all values of y. Moreover, for y ∈ (0, x), we
have (x− y)2n+1 ≤ x2n+1. Therefore, we have

|R2n+1(x)| ≤
∣∣∣∣∫ x

0

1

(2n+ 1)!
x2n+1dy

∣∣∣∣ =
x2n+2

(2n+ 1)!

Plugging in a few values for n, we find that when we let n = 3, |R7(0.8)| < 10−4.
This tells us that T7(0.8) is within 10−4 of the actual value of sin(0.8).

T7(0.8) = 0.8− 0.83

3!
+

0.85

5!
− 0.87

7!
≈ 0.71736

(The actual value of sin(0.8) is 0.717356) �

Question 2. Prove Hölder’s inequality:

Theorem 3 (Hölder’s inequality). Let p, q > 1 be real numbers such that 1
p+ 1

q = 1.

Let a1, . . . , an, b1, . . . , bn ∈ R. Then,

n∑
i=1

|aibi| ≤

(
n∑
i=1

|ai|p
) 1

p
(

n∑
i=1

|bi|p
) 1

q

Proof. Let A =
∑n
i=1 |ai|p and B =

∑n
i=1 |bi|q. If A = 0, we must have that

a1 = · · · = an = 0. Therefore, both sides of the inequality are 0. Similarly, if
B = 0, both sides of the inequality are 0 and thus, the inequality is satisfied.

Hence, we can assume that A 6= 0 and B 6= 0. Let s = 1
p and t = 1

q . Note that

0 < s, t < 1 and s+ t = 1. Let’s also define

xi =
|ai|p

A
and yi =

|bi|q

B
Note that x1 + · · ·+ xn = 1 and that y1 + · · ·+ yn = 1.

We have already shown that f(x) = ex is a convex function. By the property of
convex functions we have

f(s log xi + t log yi) ≤ sf(log xi) + tf(log yi)
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But the left hand side of the inequality is simply

f(s log xi + t log yi) = es log xi+t log yi = es log xiet log yi = xsiy
t
i

And the right hand side of the inequality is

sf(log xi) + tf(log yi) = selog xi + telog yi = sxi + tyi

Therefore, for each i, we have that xsiy
t
i ≤ sxi + tyi. Then, summing over all i’s we

get
n∑
i=1

xsiy
t
i ≤

n∑
i=1

sxi + tyi = s
(∑

xi

)
+ t
(∑

yi

)
= s+ t = 1

But we also have
n∑
i=1

xsiy
t
i =

n∑
i=1

|ai|
A1/p

|bi
B1/q

Therefore, we get

n∑
i=1

|aibi| ≤ A
1
pB

1
q =

(
n∑
i=1

|ai|p
) 1

p
(

n∑
i=1

|bi|p
) 1

q

�

Question 4. Find the Taylor series for log(1 + x6) about 0.

Solution. Instead of computing derivatives of log(1+x6), let’s take another (maybe
roundabout) approach. In particular, let’s first find the Taylor series for f(x) =
log(1− x) about 0. By straightforward computation we get

f ′(x) =
−1

1− x
; f ′′(x) =

−1

(1− x)2
; f ′′′(x) =

−2

(1− x)3

We can easily see that for n > 0, we have

f (n)(x) =
−(n− 1)!

(1− x)n

and thus, f (n)(0) = −(n−1)! for all n. Then, the Taylor series for log(1−x) about
0 becomes

log(1− x) =

∞∑
n=1

−x
n

n

But noting that log(1 + x6) is simply f(−x6), we can use what we just found to
compute the Taylor series for log(1 + x6). More precisely, we have

log(1 + x6) =

∞∑
n=1

− (−x6)n

n
=
∞∑
n=1

(−1)n+1x
6n

n

�
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3. Analytic functions

Until now, we only studied functions from R to R. But what happens if we
have a function f : C → C? One natural question to ask is: what does it mean to
differentiate such a function?

Given f : C→ C, we can write f(x+ iy) = u(x, y) + iv(x, y).

Definition 1. We say that f is analytic if it satisfies the following Cauchy-Riemann
equations.

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

Example 2. f(z) = ez is an analytic function. Let’s first find our u(x, y) and
v(x, y).

f(x+ iy) = ex+iy = exeiy = ex(cos y + i sin y)

Therefore, u(x, y) = ex cos y and v(x, y) = ex sin y. Then, the partial derivatives of
u and v are:

∂u

∂x
= ex cos y ;

∂u

∂y
= −ex sin y ;

∂v

∂x
= ex sin y ;

∂v

∂y
= ex cos y

But note that
∂u

∂x
= ex cos y =

∂v

∂y
and

∂u

∂y
= −ex sin y = −∂v

∂x

Hence, f(z) satisfies the Cauchy-Riemann equations and thus, f(z) is analytic.

Example 3. Complex conjugation f(z) = z̄ is not analytic. To see this, we write

f(x+ iy) = x+ iy = x− iy
Therefore, u(x, y) = x and v(x, y) = −y. But then, we have

∂u

∂x
= 1 6= −1 =

∂v

∂y

Hence, f(z) = z̄ does not satisfy the Cauchy-Riemann equations and thus, f(z) is
not analytic.
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