
MA 8, WEEK 2: SEQUENCES

1. Preamble: Why do we bother?

I want to provide some motivation for why we study sequences in
the first place. A common belief of many people taking calculus from
mathematicians, especially a rigorous proof-based version like Math 1,
is that the course mostly consists of difficult proofs of obvious theorems.
I mean, we know intuitively what a limit is (“the thing that a point
moves towards”), what continuity is (“drawing a graph from left to
right without lifting your pencil”), and what a derivative is (“rise over
run”).

Suppose you believe that these things are obvious over R. Here are
a couple of “obvious” theorems you might recall from your high school
calculus course.

Theorem 1. (Intermediate value theorem) If f : R→ R is continuous,
a < b and f(a) ≤ 0 ≤ f(b), then there exists a constant c with a ≤ c ≤ b
such that f(c) = 0.

Theorem 2. (Constant value theorem) If f : R→ R is differentiable
and f ′(t) = 0 for all t ∈ R, then f is constant.

Now suppose that we replace R with Q, the rational numbers. The
set Q still satisfies the field axioms and is ordered by <, just like R.
Suppose that you can give the same “intuitive” definitions of limits,
continuity, etc. However, if you continue exploring this strange world,
you’ll soon realize that things are not as normal as they seem.

Example 3. Suppose f : Q→ Q is defined by

f(x) =

{
−1, if x2 < 2

1, otherwise.

Then (a) f is a continuous function with f(0) = −1, f(2) = 1, yet
there does not exist a c with f(c) = 0, and (b) f is a differentiable
function with f ′(x) = 0 for all x, but f is not constant.

Why? We haven’t formally defined what continuity and differentiability
mean for Q. However, if you believe that f is discontinuous. Try and
find a point at which f is discontinuous.
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Similarly, if you believe that f is not every differentiable with deriv-
ative zero, find a point x ∈ Q for which this statement is false. �

You can easily generalize to any number of similar strange functions.
A function like the above behaves well and according to our intuition
if we consider it as a function from R to R, but if we pass from R to
Q, which is “almost” R, things don’t works like we think they should.
Let’s see another weird thing that happens, using the same function.

Example 4. Consider the function

g(t) = t+ f(t)

where f(t) is defined as above. It turns out that g′(t) = 1 > 0 for all t,
but g(−8/5) > g(−6/5). Therefore, if we work in Q, a function with
strictly positive derivative need not be increasing!

The reason for these weird phenomena is that when if replace R with
Q is that Q is not complete, that is, Cauchy sequences in Q do not
necessary converge in Q (consider say, a decimal approximation of π).
The completeness of R is crucial in order for us to do calculus, and to
understand this, we need to study sequences.

2. Sequences

A sequence (of real numbers) is an infinite ordered set of real num-
bers

a1, a2, a3, . . .

indexed by the natural numbers. A convenient way to think of a se-
quence is as a function (of sets)

f : N→ R

n 7→ an.

The two definitions are equivalent.

Remark 1. If you are still thinking of “functions as formulas,” let me
disabuse you of that notion right now! A function never has to be a
formula at all! A general function f : A→ B between sets A and B is
any rule that assigns to every element a ∈ A an element f(b) ∈ B.

In Ma 1a, functions are usually assumed to be from R to R and
continuous. Most major theorems about functions will assume this.
However, if you expand your notion of “function” to include functions
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between sets, it will aid your understanding of mathematics. For in-
stance, you can view differentiation (in x) as a function

d

dx
: {differentiable functions R→ R} → {functions R→ R}

f(x) 7→ f ′(x).

Studying things in this way allows you to ask interesting questions
that you would not have otherwise thought of. For instance, what is
the range of the function d

dx
above? This links calculus to many other

areas in mathematics from linear and abstract algebra to differential
equations to logic and computation.

Remark 2. Also, answers to the question above are not trivial. For in-
stance, an important function in mathematics and physics is the gamma
function

Γ(z) =

∫ ∞
0

tz−1e−t dt,

where z is any complex number. This is a sort of “completion” of the
factorial function n! in the sense that Γ(n+1) = n!. A nontrivial result
called Hölder’s theorem says that Γ(z) does not satisfy any algebraic
differential equation whose coefficients are rational functions. In other
words, if you start with rational functions and allow the operations of
differentiation, addition/subtraction, and multiplication (by rational
functions), as many times as you want, no matter how clever you are,
there is no way for you to ever get something that equals Γ(z). This
is despite the fact that you can define functions like f(x) = ex via
differential equations like

f ′ − f = 0.

The main fact that allows for calculus to work is the fact that se-
quences of real numbers converge if and only if they are Cauchy (intu-
itively if they “get closer and closer to each other”), as you’ve seen in
lecture.

However, you can state this property of the real numbers is the
following even simpler principle, which I learned as the “fundamental
axiom of analysis.”

The fundamental axiom of analysis. “Every bounded increasing
sequence has a limit.” That is, if a1, a2, a3, . . . is a sequence of real
numbers, such that a1 ≤ a2 ≤ a3 ≤ · · · then there exists an a ∈ R
such that an → a as n→∞.
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Remark 3. This is just a special case of the least upper bound property
of the real numbers.

Remark 4. Technically, in American English, it would better to call this
“nondecreasing” instead of “increasing,” but it’s slightly less catchy
that way. Theorem 10.1 below is the more comprehensive result that
you should remember: “bounded monotonic sequences (of reals) con-
verge.”

You’ll learn a lot of results about sequences, and I’ll outline the main
ones in the next section. However, they are all different manifestations
of the same idea. A unifying principle is that everything that depends
on the fundamental axiom is analysis, everything else is just algebra.
In other words, you can obtain all the theorems of analysis by using
the standard “algebraic” properties of the real numbers together with
the fundamental axiom.

As an application of this principle, let’s get a snappy proof of Apostol
Theorem 10.1 via the fundamental axiom.

Theorem 10.1. A monotonic sequence converges if and only if it is
bounded.

Lemma 5. Every decreasing sequence in R bounded below tends to a
limit.

Proof of Lemma. If a1, a2, a3, . . . is a decreasing sequence bounded
below, then−a1,−a2,−a3, . . . is an increasing sequence bounded above.
By the fundamental axiom, such a sequence has a limit L. By the
algebraic properties of sequences (namely, the linearity of convergent
series1), −L is the limit of a1, a2, . . .. �

Proof of Theorem. An unbounded sequence cannot converge. There-
fore, to prove our result, all we need to show is that a bounded mono-
tonic sequence converges. Monotonic sequences must be nondecreasing
or nonincreasing. The fundamental axiom shows that the former case
has a limit. The lemma above shows that the latter case has a limit as
well. �

3. Main Facts about Sequences

(1) The definition of convergence: The simplest way to show
that a sequence converges is sometimes just to use the definition
of convergence, that is, you want to show that for any distance

1Apostol I, p.385, equation (10.18).
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ε > 0, you can force the an’s to be within ε of our limit, for n
sufficiently large.

How should we use the definition? Here’s one method.
• Examine the quantity |an − L|, and try to come up with

a very simple upper bound that depends on n and goes to
zero. Example bounds we’d love to run into: 1/n, 1/n2, 1/ log(log(n)).
• Using this simple upper bound, given ε > 0, determine a

value of N such that whenever n > N , our simple bound
is less than ε. This is usually pretty easy: because these
simple bounds go to 0 as n gets large, there’s always some
value of N such that for any n > N , these simple bounds
are as small as we want.
• Combine the two above results to show that for any ε,

you can find a cutoff point N such that for any n > N ,
|an − L| < ε.

(2) Arithmetic of sequences: These tools let you combine previously-
studied results to get new ones. Note that only convergent
sequences behave this well.
• Additivity of sequences : if limn→∞ an, limn→∞ bn both exist,

then limn→∞ an + bn = (limn→∞ an) + (limn→∞ bn).
• Multiplicativity of sequences : if limn→∞ an, limn→∞ bn both

exist, then limn→∞ anbn = (limn→∞ an) · (limn→∞ bn).
• Quotients of sequences : if limn→∞ an, limn→∞ bn both exist,

and bn 6= 0 for all n, then limn→∞
an
bn

= (limn→∞ an)/(limn→∞ bn).

(3) The Fundamental Axiom: In R, bounded monotonic se-
quences have a limit.

(4) Subsequences and convergence: if a sequence {an}∞n=1 con-
verges to some value L, all of its subsequences must also con-
verge to L.

One particularly useful consequence of this theorem is the
following: suppose a sequence {an}∞n=1 has two distinct subse-
quences {bn}∞n=1, {cn}∞n=1 that converge to different limits. Then
the original sequence cannot converge! This is one of the easiest
ways to show that a sequence diverges.

A useful variant that we learned in class is the Bolzano-
Weierstrass theorem: every bounded sequence has a conver-
gent subsequence.

(5) Squeeze theorem for sequences: if limn→∞ an, limn→∞ bn
both exist and are equal to some value l, and the sequence
{cn}∞n=1 is such that an ≤ cn ≤ bn, for all n, then the limit
limn→∞ cn exists and is also equal to l.
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(6) Cauchy sequences: We say that a sequence is Cauchy if and
only if for every ε > 0 there is a natural number N such that
for every m > n ≥ N , we have

|am − an| < ε.

You can think of this condition as saying that Cauchy se-
quences are allowed to vary less and less from the the limit as
n → ∞, that is, if you look at points far along enough on a
Cauchy sequence, they should be close together.

Why is this useful? Because Cauchy sequences converge, if
we just verify the Cauchy condition, we don’t need to know the
limit explicitly to demonstrate that a sequence converges.

That’s a lot to digest at once, but here’s two important things to
notice. First, almost every result is just some realization or application
of the fundamental axiom. Second, due to strong results like (3), (4),
and (6), it’s easier to show that a sequence converges (without knowing
the limit explicitly) rather than finding the limit first and then showing
that your sequence converges to it.

4. Applications of the Above Facts

Example 1. The sequence

a1 = 1,

an+1 =
√

1 + a2n

does not converge.

Proof. We proceed by contradiction: in other words, suppose that this
sequence does converge to some value L, say. Then, consider the limit

lim
n→∞

a2n.

Since squaring things is a continuous operation,

lim
n→∞

a2n = ( lim
n→∞

an)2 = L2.

However, we can also use the recursive definition of the an’s to see that

lim
n→∞

a2n = lim
n→∞

(√
1 + a2n−1

)2

= lim
n→∞

(1 + a2n−1)

However, we know that limn→∞ a
2
n−1 = limn→∞ a

2
n = L2, because the

two sequences are the same (just shifted over one place) and thus have
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the same behavior at infinity. Therefore, we know that both limn→∞ 1
and limn→∞ a

2
n−1 both exist: as a result, we can apply our result on

arithmetic and sequences to see that

lim
n→∞

(1 + a2n−1) =
(

lim
n→∞

1
)

+
(

lim
n→∞

a2n−1

)
= 1 + L2.

So, we’ve just shown that L2 = 1 + L2: i.e. 0 = 1. This is clearly
nonsense, so we’ve arrived at a contradiction. Therefore, our original
assumption (that our sequence {an}∞n=1 converged must be false—in
other words, this sequence must diverge. �

Example 2. Show that

lim
n→∞

√
n+ 1−

√
n = 0.

Solution. Let’s try and prove convergence directly using our method
under (1) from above: (a) start with |an − L|, (b) try to find a simple
upper bound on this quantity depending on n, and (c) use this simple
bound to find for any ε a value of N such that whenever n > N , we
have

|an − L| < (simple upper bound) < ε.

Let’s look at the quantity |
√
n+ 1−

√
n− 0|:

|
√
n+ 1−

√
n− 0| =

√
n+ 1−

√
n

=
(
√
n+ 1−

√
n)(
√
n+ 1 +

√
n)√

n+ 1 +
√
n

=
n+ 1− n√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n

<
1√
n
.

All we did here was hit our |an−L| with some algebra, and kept trying
things until we got something simple. The specifics aren’t as important
as the idea here: just start with the |an − L| bit, and try everything
until it’s bounded by something simple and small!

In our specific case, we’ve acquired the upper bound 1√
n
, which looks

rather simple: so let’s see if we can use it to find a value of N .
Take any ε > 0. If we want to make our simple bound 1√

n
< ε, this

is equivalent to making 1
ε
<
√
n, i.e 1

ε2
< n. So, if we pick N > 1

ε2
, we
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know that whenever n > N , we have n > 1
ε2

, and therefore that our
simple bound is < ε. But this is exactly what we wanted!

In specific, for any ε > 0, we’ve found a N such that for any n > N ,
we have

|
√
n+ 1−

√
n− 0| < 1√

n
<

1√
N
< ε,

which is the definition of convergence. So we’ve proven that limn→∞
√
n+ 1−√

n = 0. �

Example 3. For any two positive real numbers x > y > 0, show that

lim
n→∞

xn − yn

xn + yn
= 1.

Proof. Using the fact that 0 < y < x, write y = cx, for some positive
real number c < 1. Then, our limit is just

lim
n→∞

xn − (cx)n

xn + (cx)n
= lim

n→∞

xn − cnxn

xn + cnxn
= lim

n→∞

xn(1− cn)

xn(1 + cn)
= lim

n→∞

1− cn

1 + cn
.

Now, notice that because 0 < c < 1, limn→∞ 1−cn = limn→∞ 1+cn =
1. Because of this, we can move our limit above into the fraction
(because both the top and bottom limits exist,) and get

lim
n→∞

1− cn

1 + cn
=

limn→∞ 1− cn

limn→∞ 1 + cn
=

1

1
= 1.

So our original limit is 1. �

Example 4. Let

an =
n∑
k=0

1

k!
.

Then the sequence {an}∞n=1 converges.

Solution. Let’s try showing that this sequence is monotonically increas-
ing and bounded to prove it converges.

Monotonically increasing : this is not hard to show: because the
difference between an+1 and an is

an+1 − an =
n+1∑
k=0

1

k!
−

n∑
k=0

1

k!
=

1

(n+ 1)!
,

which is positive, we know that an+1 > an for every n.
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Bounded : This is not much harder. Take any term an, and expand
it as the sum

an = 1 + 1 +
1

2
+

1

2 · 3
+

1

2 · 3 · 4
+

1

2 · 3 · 4 · 5
+ . . .+

1

2 · 3 · . . . · n
.

How can we make this simpler, into something we can easily study and
show is finite? One way is to simply take the denominators of all of
these fractions and replace all of the numbers greater than 2 with 2’s.
In other words, notice that

an = 1 + 1 +
1

2
+

1

2 · 3
+

1

2 · 3 · 4
+

1

2 · 3 · 4 · 5
+ . . .+

1

2 · 3 · . . . · n
≤ 1 + 1 +

1

2
+

1

2 · 2
+

1

2 · 2 · 2
+

1

2 · 2 · 2 · 2
+ . . .+

1

2 · 2 · . . . · 2
= 1 + 1 +

1

2
+

1

4
+

1

8
+ . . .+

1

2n−1
.

But we know the sum on the right! (Or at least recognize the pattern.)
In particular, by remembering our geometric sum identities from when-
ever they came up in high school (or proving them via induction, if
you’ve forgotten them), we have

1

2
+

1

4
+

1

8
+ . . .+

1

2n−1
=

2n−1 − 1

2n−1
< 1.

So the entire sum is bounded above by 1 + 1 + 1 = 3, for any n! So it’s
bounded above and monotonically increasing, and therefore convergent,
via our theorem. �

Example 5. The sequence

{an}∞n=1 = 0, 1, 0, 1, 0, 1, 0, 1, . . .

diverges.

Proof. Both

0, 0, 0, 0, 0, 0, . . .

and

1, 1, 1, 1, 1, 1, . . .

are subsequences of {an}∞n=1. Therefore, because the first subsequence
converges to 0 and the second subsequences converges to 1, which are
distinct values, our tool tells us that the original sequence {an}∞n=1

cannot converge, and thus must diverge. �
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Remark 6. Note that this illustrates what the Bolzano-Weierstrass the-
orem doesn’t tell us. Since an is bounded, we know that there is at
least one convergent subsequence. However, it doesn’t tell us what
the subsequence converges to, or whether different subsequences have
different limits!

Example 7. Show that the sequence

an =
1

n
converges.

Solution. There are a number of ways to show that this sequence con-
verges. Let’s try and show that an satisfies the Cauchy condition. Let
ε > 0. We want to find an N such that if n,m > N , then |an−am| < ε.

Remark 8. Note that N must depend on ε except in the most trivial
examples, like constant sequences.

Note that if n,m > N , then an = 1
n
, am = 1

m
< 1

N
. By the triangle

inequality,

|an − am| ≤ |an|+ |am| <
1

N
+

1

N
=

2

N
.

Since we want this last quantity to be ≤ ε, we see that any number
N > 2

ε
should work.

Let’s write this up as a clean proof.

Proof. Let ε > 0. Pick a natural number N > 2
ε
. If n,m > N , then

an = 1
n
, am = 1

m
< 1

N
. By the triangle inequality,

|an − am| ≤ |an|+ |am| <
1

N
+

1

N
=
ε

2
+
ε

2
= ε.

Hence, {an} is a Cauchy sequence, and so converges. �
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