
MA 8, WEEK 4: BIG O AND LITTLE O NOTATION,

DIFFERENTIATION

1. Big O and Little o Notation

We’ll introduce Big O and Little o notation in greater generality than was given
in lecture.

Definition 1. We say f(x) = O(g(x)) as x → a if there exists a constant C such
that

|f(x)| ≤ C|g(x)|
in some punctured neighborhood of a, that is, for x ∈ (a − δ, a + δ)\{x} for some
δ > 0.

We say f(x) = o(g(x)) as x→ a if

lim
x→a

f(x)

g(x)
= 0.

Remark 2. This notation is standard, but it is not good. Namely, the statement
“f(x) = O(g(x))” has a specific meaning, but “O(g(x)) = f(x)” is meaningless.
That is why “f(x) = O(g(x))” is often called an abuse of notation, because equal-
ity doesn’t behave like it should. Some newer textbooks in computer science use
“f(x) ∈ O(g(x))” to get around this, but the standard notation has unfortunately
proliferated through various disciplines for decades, so we’re stuck with it.

Prof. Katz tries to avoid this by saying “f(x) is O(g(x))” which is how you
would pronounce “f(x) = O(g(x)).” The bottom line is, think of “being O(g(x))”
or “being o(g(x))” as a property of a function.

Remark 3. In lecture, Prof. Katz gives this definition for a = 0. This is also how
you prove it in your homework assignment.

In computer science, or in applied mathematics/engineering, we usually take a =
∞. Things are usually more intuitive from this point of view, in which you can think
of the functions g(x) as “dominating” f(x) if f(x) ∈ O(g(x)) or f(x) ∈ o(g(x)).
This also works to some extent for a = 0, but you’ll see in the later examples it’s
slightly trickier.

Recall that the a = ∞ and a = 0 aren’t unrelated. Recall from last time that
we can define limits as x→∞ by inverting x and taking x→ 0.

Learning big O and little o notation is useful for many reasons. First, the lan-
guage (especially Big O) is ubiquitous in any practical application of mathematics,
especially in complexity theory in computer science and in engineering. Also, intro-
ducing the notation allows us to make many of the important proofs in this class
more intuitive. Furthermore, it allows us to treat the familiar notion of “error” rig-
orously, which you’ll see in any field that uses mathematics and statistics (namely,
every discipline of science and engineering). However, the downside is that it looks
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scary at first and you’ll probably be confused the first time you see it. But trust
that it’s not too hard, and that it’s worth becoming familiar with these ideas.

Since these ideas are most intuitive when sending x→∞, for our first examples,
let’s begin by assuming that a =∞.

Example 4. We’ll begin with big O:

• x = O(x)
• 60x2 = O(x2)
• x2 = O(x3)
• x3 6= O(x2)
• x2 6= O(x log x)

For little O:

• 10x = o(x2)
• 2x2 6∈ o(x2)
• 1

x = o(1)

Note that the limit a is important. For instance, 1
x = o(1) as a → ∞, but

1
x 6= o(1) as a→ 0.

Remark 5. We usually prove results assuming a = 0 since changing x − a to x
is just a change of coordinates. You may have noticed this with power series as
well. When proving results, we normally assume that the power series are expanded
around 0.

The main way we use big O and little o notation is with power series (expanded
about a) (especially Taylor expansions), as in the following familiar examples (with
a = 0):

• ex = 1 + x+ 1
2x

2 + 1
6x

3 +O(x4) as x→ 0

• 1
1−x = 1 + x+ x2 +O(x3) = 1 + x+ x2 + o(x2) as x→ 0

• |x|3 = O(x3) = o(x2) as x→ 0. As an exercise, check the following results.
• cosh(x) = O(ex) = o(e5x/4) as x→∞.
• 1/ sin(x) = O(1/x) = o(1/x3/2) as x→ 0.

Note that saying the error is o(xn) is a stronger statement than saying the error
is O(xn) (as x→ 0). However, in the most common cases, we are usually choosing
between saying that the error is o(x2) or that the error os O(x3) (as x → 0), in
which case the latter statement is strongest.

Here are some general properties. (Please remember that the “=” sign here is
not symmetric due to the abuse of notation.)

(1) f(x) = O(f(x))
(2) If f(x) = o(g(x)), then f(x) = O(g(x)).
(3) If f(x) = O(g(x)), then O(f(x)) +O(g(x)) = O(g(x)).
(4) If f(x) = O(g(x)), then o(f(x)) + o(g(x)) = o(g(x)).
(5) Let c 6= 0, then c ·O(g(x)) = O(g(x)) and c · o(g(x)) = o(g(x)).
(6) O(f(x))O(g(x)) = O(f(x)g(x))
(7) o(f(x))O(g(x)) = o(f(x)g(x))
(8) If g(x) = o(1), then 1

1+o(g(x)) = 1 + o(g(x)) and 1
1+O(g(x)) = 1 +O(g(x)).

The notation itself makes the results slightly confusing, but they make sense if you
just think about the definitions and rule out of the absurdly untrue statements.
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As a general rule, don’t “divide” by some o(g(x)) of O(g(x)). The intuitive
reason for this is that these usually represent small terms, and so can be zero (or
may be close enough to zero cause the sum to blow up).

The proofs of these propositions are easy, and more or less involves unwinding
the definitions. Let’s work through (3).

Proof. Let h(x) = O(f(x)) and j(x) = O(g(x)), so there exist constants A and B
such that

|h(x)| ≤ A|f(x)|
|j(x)| ≤ B|g(x)|.

on a neighborhood around a. From our assumption, f(x) = O(g(x)), so there exists
a constant C such that

|f(x)| ≤ C|g(x)|
on a neighborhood around a. Take the smaller of the two neighborhoods around a,
so that all the inequalities hold. Then

|h(x) + j(x)| ≤ |h(x)|+ |j(x)|
≤ A|f(x)|+B|g(x)|
≤ AC|g(x)|+B|g(x)|
≤ (AC +B)|g(x)|.

Therefore, h(x) + j(x) = O(g(x)). �

Here’s an example of how we can use o notation to simplify a computation.

Example 6. Let’s try and find the power series expansion of sin(x) cos(x) up to
an o(x4) error. Recall that

sin(x) = x− x3

6
+ o(x4)

cos(x) = 1− x2

2
+
x4

24
+ o(x4).

We compute the product, and in doing so absorb all terms of o(x4) and smaller
into o(x4):

sin(x) cos(x) =

(
x− x3

6
+ o(x4)

)(
1− x2

2
+
x4

24
+ o(x4)

)
= x− x3

2
+
x5

24
+ x · o(x4)− x3

6
+
x5

12
− x7

144
− x3

6
· o(x4)

+ o(x4)− x2

2
· o(x4) +

x4

24
· o(x4) + o(x4)o(x4)

= x− x3

2
− x3

6
+ o(x4)

= x− 2

3
x3 + o(x4).

What’s nice about this is that the 4th order Taylor polynomial is x − 2
3x

3 (c.f.
Apostol 7.9), so this provides an alternative way to compute this.



4 MA 8, WEEK 4: BIG O AND LITTLE O NOTATION, DIFFERENTIATION

Remark 7. This kind of procedure is useful, for instance, if it is very costly to
compute. (Think transmitting a message from a remote location with the worst
roaming charges you can imagine, like being annihilated by the hostile rebel forces
around your hidden location.) Because instead of computing the many arithmetic
operations needed to compute sine and cosine and then multiplying the values
together, you can just plug in the value of x for x− 2

3x
3 and use only ∼ 5 operations

and get something within o(x4) accuracy.
For a more pedestrian example, if you need to compute really really big numbers

with any hope of accuracy, you need to use some kind of procedure like the above.
(Indeed, almost all robust industrial computer programs make heavy use of such
estimates.)

2. Differentiation

Definition 1. For a function f defined on some neighborhood (a − δ, a + δ), we
say that f is differentiable at a iff the limit

lim
h→0

f(a+ h)− f(a)

(a+ h)− a
exists. If it does, denote this limit as f ′(a); we will often call this value the deriv-
ative of f at a.

Proposition 2. The derivative of f(x) = 1/x at any point a 6= 0 is −1/a2.

Proof. Pick any point a 6= 0 in R: then, a direct calculation of the limit tells us
that

lim
h→0

f(a+ h)− f(a)

(a+ h)− a
= lim

h→0

1
a+h −

1
a

h

= lim
h→0

a
(a)·(a+h) −

a+h
(a)·(a+h)

h

= lim
h→0

a−a−h
(a)·(a+h)

h

= lim
h→0

−h
(h) · (a) · (a+ h)

= lim
h→0

−1

(a) · (a+ h)

But this is just the quotient of a pair of polynomials, the denominator of which
is nonzero as h → 0. Because polynomials are continuous everywhere, we then
know that we can pass the limit through the quotient operation, and just evaluate
the numerator and denominator’s limits separately. Hence, this limit is −1/a2, as
desired. �

This is probably very familiar to the limit calculations that you did in your
previous calculus course. Indeed, such calculations provide the outline for the
proofs of limits in this course, you just need to apply the rigorous methods at the
right steps.

The above example was a rather quick and direct calculation; our second exam-
ple, however, is a bit trickier:
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Proposition 3. The derivative of f(x) = ex at any point a is ea.

Before we begin this proof, however, we probably should define our terms: what
do we even mean by ex here, anyways? Assume that we don’t know any of the
familiar properties of e and only know that we have a power series expansion

ex =

∞∑
n=0

xn

n!
.

Proof. We start by simply examining the derivative as a limit:

lim
h→0

f(a+ h)− f(a)

(a+ h)− a
= lim

h→0

ea+h − ea

h

= lim
h→0

eaeh − ea

h

= lim
h→0

ea · e
h − 1

h

= lim
h→0

ea ·
(∑∞

n=0
hn

n!

)
− 1

h

(Notice here that we’ve used the fact ea+h = eaeh, despite the fact that this
is not obvious given our definition of ex as a power series, and not as some kind
of exponentiation! If you want, you can directly prove this fact: just multiply the

polynomials
(

1 + a
1 + a2

2! + . . .+ an

n!

)
and

(
1 + h

1 + h2

2! + . . .+ hn

n!

)
by each other,

and by clever grouping/use of the binomial expansion formula, see that you have(
1 + a+h

1 + (a+h)2

2! + . . .+ (a+h)n

n!

)
.)

Once you’re persuaded that this was legitimate, return to our expression above.
In order to bring the −1 and the division by h into our sum

∑∞
n=0

hn

n , we express
this sum as a limit, and then use the fact that limits play nicely with arithmetic:

lim
h→0

f(a+ h)− f(a)

(a+ h)− a
= lim

h→0
ea ·

(
limn→∞ 1 + h

1 + h2

2! + . . .+ hn

n!

)
− 1

h

= lim
h→0

ea ·

(
limn→∞

h
1 + h2

2! + . . .+ hn

n!

)
h

= lim
h→0

ea ·
(

lim
n→∞

1

1
+
h

2!
+ . . .+

hn−1

n!

)
= lim

h→0
ea ·

( ∞∑
n=1

hn−1

n!

)

The series on the right has an infinite radius of convergence by the ratio test. In
particular, it is strictly less than the series

∑∞
n=1

hn

n! , which we know to be eh.
Therefore, if we use the squeeze theorem and squish our limit between ea and
ea · eh, because both limh→0 e

a = limh→0 e
a · eh = ea, the squeeze theorem tells us

that the derivative of ex at a is ea, as well. �
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Remark 4. One thing to notice in the above proof: we’ve assumed that limh→0 e
h

is 1. This is a familiar property of ex, but since we only assumed that we knew the
power series expansion, it’s worth noting.

It’s not too hard to prove this—try comparing its series to the series
∑

xn

2n−1 .

First, notice that term-wise, we have xn

n! <
xn

2n−1 , for any n: this is because on the
one side you’re taking the product 1 · 2 · . . . n, which grows much faster than just
2 · 2 · 2 . . . · 2. Now, notice that we can actually evaluate the second series:

∑
xn

2n−1

is just a geometric series that converges to 2 · 1
1− x

2
. (In general, the geometric series∑∞

n= y
n converges to 1

1−y whenever 0 < y < 1: prove this!) When x → 0 in the

above expression, the expression goes to 1; so our larger series goes to 1 as x goes
to 0. Therefore, by the squeeze theorem, because we can also bound it below by
just its first term 1, the ex series must also go to 1 as x→ 0.

In general, in your work in this class, you can assume familiarity with the ex-
ponential function and its basic properties (e.g. the ones you find in the book).
However, it’s nice to know that, if you wanted to, you could derive all of the famil-
iar properties rigorously using our new tools and definitions.

3. Differentiation: Tools

Here are a few fundamental results that we will use constantly in this class to
study differentiable functions.

Proposition 1. For f , g a pair of functions differentiable at a and α, β a pair of
constants,

(αf(x) + βg(x))′(a) = αf ′(a) + βg′(a).

Proposition 2. For f , g a pair of functions differentiable at a,

(f(x) · g(x))′(a) = f ′(a) · g(a) + g′(a) · f(a).

Proposition 3. For f a function differentiable at g(a) and g a function differen-
tiable at a,

(f(g(x)))′(a) = f ′(g(a)) · g′(a).

Much like for continuous functions, most of your derivative calculations should
come through the results we’ve established in class (how to take derivatives of trig
functions, polynomials, and ex) and just algebra with the above three rules. (You
could, in theory, work out everything single such thing from the beginning straight
from the definitions, but of course, we want to save ourselves some work.)

Here’s a quick illustration of how you might go about this.

Example 4. For any positive a,

(ln(x))′(a) =
1

a
.

Proof. To do this, we should probably define what ln(x) is! Define ln(x) as the
function from (0,∞) to R, that takes x ∈ R to the unique value y ∈ R such that
ey = x. That is, ln(x) is the function that undoes ex: it is the unique function such
that eln(x) = x, for any positive x. (Note that mathematicians usually use log(x)
to mean ln(x). We almost never use base 10 logarithms.)
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Using this definition, examine the quantity eln(x). On one hand, we know that
this function is just x by definition; so(

eln(x)
)′

= (x)′ = 1.

On the other hand,(
eln(x)

)′
= eln(x) · (ln(x))

′
, (by the chain rule)

= x · (ln(x))
′
.

Equating both sides, we have that

1 = x · (ln(x))
′

⇒ 1

x
= (ln(x))

′
.

So we’re done! No epsilons or deltas or convergence tests needed! (Of course,
they’re all working very hard in the background.) �
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