
MA 8, WEEK 7: FUNDAMENTAL THEOREM OF CALCULUS,

TAYLOR SERIES AND APPROXIMATION

1. More Mysteries of R: Transcendental Numbers

We saw last week that there are countably infinitely many rational numbers and
uncountably many irrational numbers. However, it turns out that irrational num-
bers are more intractable than they might seem, which tells us that we (as mathe-
maticians, as the scientific community) are not looking at the irrational numbers in
the right way. But let’s see one more reason why irrationals are hard to understand.

Let’s try and look at the real numbers in another way. Say a number in R is
algebraic if it is the root of a polynomial equation with coefficients in the rational
numbers. Obviously, all rational numbers are algebraic, since any such number
a ∈ Q is the root of the polynomial

x− a,
which has rational coefficients. However, there are some irrational numbers that
are also algebraic. For instance,

√
2 is algebraic since it is the root of

x2 − 2.

Roughly speaking, the algebraic numbers represent the real numbers you can get
by starting with the integers and adding, subtracting, multiplying, dividing, and
taking roots. The algebraic numbers also have nice properties, for instance, the sum
of two algebraic numbers is algebraic, and the product of two algebraic numbers
is also algebraic (Try and work these out). This leads one to ask, are there any
real numbers that are not algebraic, for which there is absolutely no polynomial
equation for which it is a root?

Surprisingly, the answer turns out to be yes. Such non-algebraic numbers are
called transcendental. The first transcendental number to be found was

∞∑
k=1

10−k! = 0.1100010000000000 · · ·

by Liouville. It’s fun to try and understand why the number above cannot satisfy
any possible polynomial equation (Hint: one way is to think about the growth
of the sequence and how to account for it as a polynomial). It turns out that
π and e are also transcendental (as you might have expected), but the proofs of
these are much more involved (look them up!). In general, proving that numbers
are transcendental is really hard. For instance, it is a long-standing problem to
determine whether sums like e + π are transcendental. They are expected to be,
but there has not yet been a valid proof of such a result. Such lack of progress
indicates that we do not really understand transcendental numbers very well.

However, even without such explicit examples, using what we proved before,
we can show that despite the fact we have few known examples of transcendental
numbers, “most” real numbers are transcendental. The reason is that the rationals
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are countably infinite, so the polynomials you can form with rational coefficients
are also countably infinite (e.g. we could count them by increasing degree). Since
algebraic numbers must be roots of polynomials, and each polynomial only has
finite many roots, and there are only countably infinitely many polynomials, we
conclude that there are only countably infinitely many algebraic numbers. Since R
is uncountably infinite, this implies that except for a countably infinite set, R con-
sists of transcendental numbers; that is, there are uncountably many transcendental
numbers. Indeed, one can easily show that there are just as many transcendental
numbers as real numbers!

Even though there are so many transcendental numbers, we still don’t know good
ways to construct them. For instance, a famous question regarding these numbers
from the beginning of the 20th century asks:

Q: If a is an algebraic number that is not 0 or 1, and b is an irrational
algebraic numbers, is ab necessarily transcendental?

The answer turns out to be be yes (a theorem of Gelfond-Schneider), but this
took a considerable amount of thinking to work out. Let’s try and briefly think
like a mathematician and try to remove hypothesis, find the converse, strengthen
conclusions, etc.

What happens if you remove the adjective “algebraic” on a and b? Well, we can
then get things like

(
√

2

√
2
)
√
2 =
√

2

√
2·
√
2

=
√

2
2

= 2.

(By the Gelfond-Schneider Theorem, a = 2
√
2 is transcendental, not algebraic.)

Similarly, if a = 3 and b = (log 2)/(log 3), which is transcendental, then ab = 2 is
algebraic.

Note that the result only works in one direction. It’s an open question to find
necessary and sufficient conditions on a and b such that ab is algebraic.

2. Fundamental Theorem of Calculus

Here’s the main result of the course. Essentially everything else in single-variable
calculus is just a corollary of this result. This is the precise sense in which “inte-
gration and differentiation are inverse operations.”

Theorem 1. (The Fundamental Theorem of Calculus, Version 1) Let F be a con-
tinuous function on the interval I = [a, b]. Suppose F is differentiable everywhere
in the interior of the interval I (that is, on (a, b)) with derivative f , which is (Rie-
mann) integrable. Then ∫ b

a

f(x) dx = F (b)− F (a).

As you may remember from your previous calculus course, we usually say that
F is the antiderivative or the primitive of f .

Let’s take a moment and just marvel at the miracle of this.
Why are all of these conditions needed?

Remark 2. Note that we can only talk about differentiability on the interior of I,
because in R, the definition of the derivative at a point depends on limits coming
from both the positive and negative sides.
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We also commonly apply the following version of the Fundamental Theorem of
Calculus. The following is a slightly souped-up version of the FTC presented in
class, and comes from your textbook.

Theorem 3. (The Fundamental Theorem of Calculus, Version 2) Let f be a func-
tion that is integrable on [a, x] for each x in [a, b]. Let c be such that a ≤ c ≤ b and
define a new function

F (x) =

∫ x

c

f(t) dt, if a ≤ x ≤ b.

Then the derivative F ′(x) exists at each point x in the open interval (a, b) where f
is continuous, and for such x, we have

F ′(x) = f(x).

As a corollary of this second theorem, we obtain the following useful result that
is also sometimes referred to as a “Fundamental Theorem of Calculus.”

Corollary 4. Suppose that f is continuous on an open interval I, and let F be any
antiderivative of f on I. Then, for each c and each x in I, we have

F (x) = F (c) +

∫ x

c

f(t) dt.

This might seem stupid at first, since it’s just saying the same thing as the
theorems above. However, we want to interpret this in the following way. When we
apply this, we are really interested in the value of the antiderivative F (x). This says
that you can determine the value of F (x) at a random point precisely by evaluating
it at some point F (c) and calculating the integral from x to c. This is useful, for
instance, if, say F (c) is easy to calculate for a specific c, but F (x) is generally hard
to compute.

2.1. The interaction between differentiability and integration. So we have
sort of a dictionary between the two worlds for nice functions: the “light world” of
differentiability, and the “dark world” of integration, with the bridge between them
given by the Fundamental Theorem of Calculus.

It’s important to understand what actions in one world look like when trans-
ported to the other world via these bridges. This should be something you should
cultivate as you continue to learn calculus.

Consider two of the main tools we have for differentiation:

• The chain rule, which says that for differentiable f, g, we have (f(g(x))′ =
f ′(g(x)) · g′(x).

• The product rule, which says that for differentiable f, g, we have (f(x)g(x))′ =
f ′(x)g(x) + g′(x)f(x).

What do these look like in the “dark world” of integration?
Taking the product rule over to the dark side, we obtain the following technique.

Theorem 5. (Integration by Parts) If f, g are a pair of C1-functions on [a, b], then∫ b

a

f(x)g′(x) dx = f(x)g(x)

∣∣∣∣b
a

−
∫ b

a

f ′(x)g(x) dx.
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Of course, you probably learned this as a technique in calculus symbolically as∫
u dv = uv −

∫
v du.

I like to this of this result “physically” as saying that you can switch the function
to which you are applying d

dx inside an integral, as long as you switch the sign and
add an error term. It’s cool to try and do this for some basic mechanics questions,
for instance.

Taking the chain rule over to the dark side, we obtain another useful technique.

Theorem 6. (Change of Variables/Substitution) If f is a continuous function on
g([a, b]) and g is a C1-function on [a, b], then∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(x) dx.

Remark 7. Don’t forget to change the endpoints.

Again, you can interpret this as follows. Your g(x) is a sort of “distortion” of
the interval, so to account for this, you need to integrate by g′(x)dx instead of just
dx itself.

This kind of geometric reasoning may not be so useful in a one-dimensional
setting, but you will see that it will be crucial to understand in multivariable cal-
culus, when identifying symmetries and decomposing a function into a composite
of simpler functions greatly simplifies calculations.

3. Applications of the Fundamental Theorem of Calculus

Let’s start with some familiar examples.

Example 1. We have ∫ b

0

xp dx =
bp+1

p+ 1

Proof. Note that f(x) = xp is continuous and bounded on [0b] for any b. Further-
more, we know that (

xp+1

p+ 1

)′
=
p+ 1

p+ 1
xp = xp

for all x, so xp+1

p+1 is a primitive of xp. By the FTC,∫ b

0

xP dx =
bp+1

p+ 1
− 0

p+ 1
=

bp+1

p+ 1

as desired. �

This illustrates the power of the FTC to simplify greatly. For instance, as you
know from your homework, proving this fact without the FTC takes quite a bit
more work. In fact, depending on your approach, it may have been shorter if you
just proved the FTC first and then applied it!

The main way that we the second form of the FTC is to deal with integration
of the form

F (x) =

∫ g(x)

a

f(t) dt
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where f(x) is some continuous and bounded function. Without the FTC, how can
we take the derivative? Taking the derivative of an integral itself it subtle without
the FTCs, and to deal with the composition with the function g(x) is difficult.

However, we can attack these with the FTC as follows. Let

H(x) =

∫ x

a

f(t) dt,

so that F (x) = H(g(x)). Then the chain rule says

F ′(x) = H ′(g(x)) · g′(x).

By the FTC, we see that H ′(x) = f(x), so then have

F ′(x) = f(g(x)) · g′(x),

which is something we can calculate!
Let’s see this method in action.

Example 2. Calculate the derivative of the function

F (x) =

∫ x2

0

sin(t)dt.

Proof. First, define the function G(x) as

G(x) :=

∫ x

0

sin(t)dt.

By the fundamental theorem of calculus, we know that

G′(x) := sin(x).

Thus, because G(x2) = F (x), we can just use the chain rule to see that

(F (x))′ = (G(x2))′

= 2x ·G′(x2)

= 2x ·
(∫ x

0

sin(t)dt

)′ ∣∣∣∣∣
x2

= 2x · sin(x2).

�

Example 3. Calculate the derivative of the function

F (x) =

∫ x

1/x

1

t
dt,

whenever t > 0.

Proof. First, define the function G(x) as

G(x) :=

∫ x

1

1

t
dt.

Then, by the fundamental theorem of calculus, we have that

G′(x) := 1/x.
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So: note that

F (x) =

∫ x

1/x

1

t
dt =

∫ x

1

1

t
dt−

∫ 1/x

1

1

t
dt = G(x)−G(1/x).

(Note that we defined the function G here as an integral starting at 1, not 0! This
is because the integral

∫ x
0

1
t dt doesn’t even exist whenever x is nonzero. So, when

you use linearity of your integrals to split them apart, do be careful that you’re not
accidentally breaking your integral into parts that don’t exist!)

Then, with this expression of F (x) = G(x)−G(1/x), we can just proceed by the
chain rule:

(F (x))′ = (G(x)−G(1/x))′

= G′(x)− (− 1

x2
) ·G′(1/x)

= 1/x+
1

x2
· 1

1/x

= 2/x.

�

3.1. Review of Integration by Parts and Substitution.

Question 4. What’s ∫ 2

1

x2exdx ?

Proof. Looking at this problem, it doesn’t seem like a substitution will be terribly
useful: so, let’s try to use integration by parts!

How do these kinds of proofs work? Well: what we want to do is look at
the quantity we’re integrating (in this case, x2ex,) and try to divide it into two
parts – a “f(x)”-part and a “g′(x)” part – such that when we apply the relation∫
f(x)g′(x) = f(x)g(x)−

∫
g(x)f ′(x), our expression gets simpler!

To ensure that our expression does in fact get simpler, we want to select our
f(x) and g′(x) such that

(1) we can calculate the derivative f ′(x) of f(x) and find a primitive g(x) of
g′(x), so that either

(2) the derivative f ′(x) of f(x) is simpler than the expression f(x), or
(3) the integral g(x) of g′(x) is simpler than the expression g′(x).

So: often, this means that you’ll want to put quantities like polynomials or ln(x)’s
in the f(x) spot, because taking derivatives of these things generally simplifies
them. Conversely, things like ex’s or trig functions whose integrals you know are
good choices for the integral spot, as they’ll not get much more complex and their
derivatives are generally no simpler.

Specifically: what should we choose here? Well, the integral of ex is a particularly
easy thing to calculate, as it’s just ex. As well, x2 becomes much simpler after
repeated derivation: consequently, we want to make the choices

f(x) = x2 g′(x) = ex

f ′(x) = 2x g(x) = ex,
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which then gives us that∫ 2

1

x2exdx = f(x)g(x)
∣∣∣2
1
−
∫ 2

1

f ′(x)g(x)dx

= x2ex
∣∣∣2
1
−
∫ 2

1

2xexdx.

Another integral! Motivated by the same reasons as before, we attack this inte-
gral with integration by parts as well, setting

f(x) = 2x g′(x) = ex

f ′(x) = 2 g(x) = ex.

This then tells us that∫ 2

1

x2exdx = x2ex
∣∣∣2
1
−
∫ 2

1

2xexdx

= x2ex
∣∣∣2
1
−
(
f(x)g(x)

∣∣∣2
1
−
∫ 2

1

f ′(x)g(x)dx

)
= x2ex

∣∣∣2
1
−
(

2xex
∣∣∣2
1
−
∫ 2

1

2exdx

)
= x2ex

∣∣∣2
1
−
(

2xex
∣∣∣2
1
− 2ex

∣∣∣2
1

)
= 4e2 − e1 −

(
4e2 − 2e1 − 2e2 + 2e1

)
= 2e2 − e1.

�

Question 5. What is ∫ 2

0

x2 sin(x3)dx ?

Proof. How do we calculate such an integral? Direct methods seem unpromising,
and using trig identities seems completely insane. What happens if we try substi-
tution?

Well: our first question is the following: what should we pick? This is the
only “hard” part about integration by substitution – making the right choice on
what to substitute in. In most cases, what you want to do is to find the part of the
integral that you don’t know how to deal with – i.e. some sort of “obstruction.”
Then, try to make a substitution that (1) will remove that obstruction, usually
such that (2) the derivative of this substitution is somewhere in your formula.

Here, for example, the term sin(x3) is definitely an “obstruction” – we haven’t
developed any techniques for how to directly integrate such things. So, we make
a substitution to make this simpler! In specific: Let g(x) = x3. This turns our
term sin(x3) into a sin(g(x)), which is much easier to deal with Also, the derivative
g′(x) = 3x2dx is (up to a constant) being multiplied by our original formula –
so this substitution seems quite promising. In fact, if we calculate and use our
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indicated substitution, we have that∫ 2

0

x2 sin(x3)dx =

∫ 2

0

sin(g(x)) · 1

3
· g′(x)dx

=

∫ 23

03
sin(x)dx

=
cos(0)

3
− cos(8)

3

(Note that when we made our substitution, we also changed the bounds from [a, b]
to [g(a), g(b)]! Please, please, always change your bounds when you make a substi-
tution!) �

4. Why is differentiation easy, but integration so hard?

As you may have noticed, in calculus, integration is much harder than differenti-
ation. But why is this the case, if they are essentially the same, as inverses of each
other?

Well, the first thing is that you shouldn’t always expect the existence of inverses
operations to have similar levels of difficulty. In other words, “inverse” does not
always mean “symmetric.” For instance, it’s easy to mix a needle into a haystack,
but it’s harder to then separate the needle from the haystack once again. For a
slightly more concrete example, think of squaring and taking the square root of
rational numbers. The square of a rational number is always rational, but the
square root of a rational number may not be!

Another reason that integration is seen as hard is due to the approach that we
tend to take when learning calculus: generally speaking, we learn differentiation
first, think of it as the “basic” operation, and then thinking of integration as the
inverse.

But what if we tried the opposite point of view? (Indeed, Apostol itself fol-
lows this approach by defining integration first, but Math 1a generally takes the
traditional “differentiation, then integration” approach.)

For instance, consider the following question. Given a function g, when is there
an f such that

g(x) = C +

∫ x

0

f(t) dt

holds? The answer is whenever g is absolutely continuous, which is when for every
ε > 0, there exists a δ such that whenever we have a finite sequence of pairwise
disjoint subintervals (ak, bk) such that∑

k

|bk − ak| < δ

then ∑
k

|f(bk)− f(ak)| < ε.

This is stronger than continuity, and stronger than a notion called uniform conti-
nuity (which itself implies continuity). As you may notice, this definition is difficult
to check, unless your function is of a specific type.

Every absolutely continuous function is continuous, but there are lots of contin-
uous functions that are not absolutely continuous. Indeed, “most” continuous are
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not absolutely continuous, in a sense similar to how we saw that “most” continuous
functions are not differentiable.

This actually highlights one instance of why differentiation is easy, but integra-
tion is hard. For instance, differentiation just relies on “local” information, while
integration relies on “global” information. And it’s this difficulty in “patching up”
local information to get global information that contributes to integration being
more difficult.

5. Taylor Series

5.1. Definitions. When we first defined the derivative, recall that it was supposed
to be the “instantaneous rate of change” of a function f(x) at a given point a. In
other words, f ′ gives us a linear approximation to f(x) near a: for small ε, we have
f(a+ ε) ≈ f(a) + εf ′(a).

Taylor series is just the extension of this idea to higher order derivatives, giving
us a better approximation to f(x).

Definition 1. Let f(x) be n-times continuously differentiable on an interval [a, b]
and let c ∈ (a, b). Then, the n-th order Taylor polynomial of f(x) about c is:

Tn(f)(x) =

n∑
k=0

f (k)(c)

k!
(x− c)k

The n-th order remainder of f(x) is defined to be

Rn(f)(x) = f(x)− Tn(f)(x)

The following two theorems are the essence of why Taylor series is indeed a good
approximation of f(x).

Theorem 2. Let the notation be as in Definition 1. Then, Rn(f)(x) is o((x−c)n).

Note that this really just means that when x is close to c, Tn(f)(x) is close to
the real value of f(x).

Theorem 3. Suppose f(x) is (n+ 1)-times continuously differentiable. Then,

Rn(f)(x) =

∫ x

c

f (n+1)(c)

n!
(x− y)ndy

Before using Taylor series to approximate integrals, let’s compute the Taylor
series for ex.

Example 4. Let’s compute the Taylor series for f(x) = ex about 0.
For all n, we know that f (n)(x) = ex. Hence, we get

ex =

∞∑
k=0

f (k)(0)

k!
xk =

∞∑
k=0

xk

k!

Note also that the radius of convergence for this series is ∞.
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5.2. Aside. In this section, we will derive Euler’s formula by Taylor series ex-
pansion of ex, sinx and cosx, which is a very surprising and (in a way) beautiful
formula.

The Taylor series for sinx and cosx are:

sinx = x− x3

3!
+
x5

5!
− · · · =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

cosx = 1− x2

2
+
x4

4!
− · · · =

∞∑
n=0

(−1)n
x2n

(2n)!

If you look closely, the Taylor series for sinx and cosx look like you’ve taken

half of the terms of the Taylor series for ex = 1 +x+ x2

2 + · · · and alternated signs.
So can we find any relation between these functions?

The answer is YES! Let i be the imaginary number, i.e. i is some number (not
real) with the property that i2 = −1. As baffling as it might be to raise a number
to a complex power, let’s take a leap of faith and plug in ix in the Taylor series for
ex. We get:

eix = 1 + ix+
(ix)2

2
− (ix)3

3!
+

(ix)4

4!
+ · · ·

= 1 + ix− x2

2
+
ix3

3!
+
x4

4!
+
ix5

5!
− · · ·

=

(
1− x2

2
+
x4

4!
− x6

6!
+ · · ·

)
+

(
ix− ix3

3!
+
ix5

5!
− · · ·

)
=

(
1− x2

2
+
x4

4!
− x6

6!
+ · · ·

)
+ i

(
x− x3

3!
+
x5

5!
− · · ·

)
= cosx+ i sinx

So there we have it! eix = cosx + i sinx. If you are still not convinced that this
formula is surprising, let’s plug in x = π and see what we get.

eiπ = cosπ + i sinπ = −1⇒ eiπ + 1 = 0

The equation we end up with is often said to be the “most beautiful equation in
mathematics”. e, π, i, 1 and 0 are some of the most important numbers and to see
them appear in one equation is quite surprising indeed!

5.3. Approximating Integrals. Now, we will see how Taylor series can help us

approximate integrals. For example, consider the Gaussian integral
∫
e−x

2

dx. Un-

fortunately, there is no elementary antiderivative of e−x
2

. But using Taylor series,
we can approximate the value of this integral.

Example 5. Approximate
∫ 1/3

0
e−x

2

dx to within 10−6 of its actual value.

From now, instead of writing Tn(e−x
2

)(x) and Rn(e−x
2

)(x), we will simply write

Tn(x) and Rn(x). Then, for any n, we have e−x
2

= Tn(x) +Rn(x). Thus,∫ 1/3

0

e−x
2

dx =

∫ 1/3

0

Tn(x)dx+

∫ 1/3

0

Rn(x)dx

Note that Tn(x) is just a polynomial. Therefore,
∫ 1/3

0
Tn(x)dx is an integral that

we can explicitly compute. On the other hand, we know that Rn(x) goes to 0 as n
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increases. So the idea is to make |
∫
Rndx| small by increasing n: in this case, we

want to find n such that |
∫ 1/3

0
Rn(x)dx| < 10−6.

By Taylor’s Theorem, we have

Rn(e−x)(x) =

∫ x

0

(−1)n
e−t

n!
(x− t)ndt

Note that Rn(x) from above is Rn(e−x
2

)(x). However, Rn(e−x
2

)(x) is precisely
equal to Rn(e−x)(x2). Hence, we see that

Rn(x) =

∫ x2

0

(−1)n
e−t

n!
(x2 − t)ndt

Unfortunately this is not something we can easily integrate. However, we are not
interested in the actual value of this integral. We only need to bound it by 10−6.

First, we see that on the interval [0, x2], e−t is always less than or equal to e0 = 1.
And (x2 − t)n is bounded from above by (x2 − 0)n = x2n. Note also that for all

t ∈ [0, x2], e−t

n! (x2 − t)n ≥ 0. Therefore, we get

|Rn(x)| =

∣∣∣∣∣
∫ x2

0

(−1)n
e−t

n!
(x2 − t)ndt

∣∣∣∣∣
=

∫ x2

0

e−t

n!
(x2 − t)ndt

≤
∫ x2

0

1

n!
x2ndt

=
x2n

n!
t

∣∣∣∣x2

0

=
x2n+2

n!

In our case, we want |
∫ 1/3

0
Rn(t)dt| < 10−6. Therefore, we need to find a value of

n for which 1
n!

(
1
3

)2n+2
< 10−6. A little playing around with the inequality will tell

you that when we let n = 3, the inequality is satisfied.

This means that
∫ 1/3

0
T3(x)dx is within 10−6 of the real value of

∫ 1/3

0
e−x

2

dx.

Again,
∫ 1/3

0
T3(x)dx is very easy to compute explicitly:∫ 1

3

0

T3(x)dx =

∫ 1
3

0

1− x2 +
x4

2
− x6

6
dx

=

(
x− x3

3
+
x5

10
− x7

42

) ∣∣∣∣ 13
0

=
147604

459270

This example shows that Taylor series can be used efficiently to approximate
integrals. However, we should note that Taylor series works well near the point
at which we are writing the series. For example, if we were to follow the exact

same steps in the above example to approximate
∫ 2

0
e−x

2

dx to within 0.1 of the

actual value, we would need to compute
∫ 2

0
T11(x)dx. In our example, we only

needed third order Taylor expansion to get an approximate value with error less
than 10−6. However, as we get farther away from 0, to get an approximate with
similar error bounds, we need to use higher and higher order Taylor polynomials.
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One way to fix this is to divide the interval into several subintervals. Then, we
can write a Taylor series expansion for f(x) for each interval and approximate the
integral over each interval as we did in above example.
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