
MA 8, WEEK 7: OPTIMIZATION, CRITICAL POINTS AND

EXTREMA, CONVEX FUNCTIONS

1. Optimization

1.1. Critical points and local extrema.

Definition 1. Let f be a once continuously differentiable function on an interval
I. We say that a point a ∈ I is a critical point of f if f ′(a) = 0

Critical points are important because they are the only points that can be local
extrema. So let’s first define what we mean by local extrema precisely.

Definition 2. We say that a is a local minimum (resp. local maximum) of f if
there exists δ > 0 such that for all x ∈ (a − δ, a + δ), we have f(x) ≥ f(a) (resp.
f(x) ≤ f(a)).

If a is either a local minimum or a local maximum, we say that a is a local
extremum.

Proposition 3. Let f be a once continuously differentiable function on an interval
I. Suppose a is a local extremum of f . Then f ′(a) = 0.

Proof. We proceed by contradiction. We will only prove that when a is a local
minimum of f , then f ′(a) = 0. The case when a is a local maximum will follow by
the symmetry of argument.

Suppose a is a local minimum of f and suppose that f ′(a) 6= 0. Then, either
f ′(a) > 0 or f ′(a) < 0. We can assume without loss of generality that f ′(a) > 0.

Since f is once continuously differentiable, f ′ is a continuous function. In par-
ticular, we can find δ1 > 0 such that f ′(x) > 0 for all x ∈ (a− δ1, a+ δ1).

Now, since a is a local minimum, we can find δ2 > 0 such that f(x) ≥ f(a) for
all x ∈ (a− δ2; a+ δ2). Now, let δ = min(δ1, δ2).

Since f is continuous and has a local minimum at a, we can find b1, b2 ∈ (a −
δ, a + δ) such that f(b1) = f(b2). By the Mean Value Theorem, we can find
c ∈ (b1, b2) ⊂ (a− δ, a+ δ) such that

f ′(c) =
f(b2)− f(b− 1)

b2 − b1
= 0

However, we chose δ such that whenever x ∈ (a−δ, a+δ), we have f ′(x) > 0. Hence,
existence of such c is a contradiction and thus, we conclude that f ′(a) = 0. �

So we see that local extrema must be critical points of f . But is the converse
also true? Unfortunately, the converse is not true in general. For example, consider
f(x) = x3. Then, f ′(0) = 0 and thus, 0 is a critical point of f but we also know that
x3 is a monotone increasing function. Therefore, 0 cannot be a local extremum.

What is true, however, is that with a few extra conditions on f , we can check if
a point a is a local extremum of f .
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1.2. First and Second Derivative Tests.

Proposition 4 (First Derivative Test). Let f be once continuously differentiable
function on an interval I. Let a ∈ I be a critical point of f .

• Suppose there exists δ > 0 such that f ′(x) < 0 for all x ∈ (a − δ, a) and
f ′(x) > 0 for all x ∈ (a, a+ δ). Then, a is a local minimum of f
• Suppose there exists δ > 0 such that f ′(x) > 0 for all x ∈ (a − δ, a) and
f ′(x) < 0 for all x ∈ (a, a+ δ). Then, a is a local maximum of f

If f is twice continuously differentiable, this extra condition looks particularly
nice.

Proposition 5 (Second Derivative Test). Suppose f is a twice continuously dif-
ferentiable function on I. Let a ∈ I be a critical point of f .

• Suppose f ′′(a) > 0. Then, a is a local minimum of f .
• Suppose f ′′(a) < 0. Then, a is a local maximum of f .

Example 6. Let’s end this section with an optimization problem.
Suppose Caltech Bookstore sells 200 iPad MiniTM with Retina DisplayTM (here-

after referred to as just iPad) a week at $350 each. A market survey indicates
that for each $10 rebate offered to buyers, the number of iPads sold per week will
increase by 20 units.

Write the price and the revenue as functions of number of units sold per week.
How large should the rebate be if Caltech Bookstore wanted to maximize revenue?

Solution. Let x be the number of iPads sold in a week. Then, the increase in sales
by offering a rebate is x− 200. The market survey says that for each increment of
20 units sold per week, the rebate offered is $10. Therefore, we can write the price
function, p(x) as

P (x) = 350− 10

20
(x− 200) = 450− 1

2
x

Now, revenue is simply the price multiplied by sales i.e.

R(x) = xP (x) = 450x− 1

2
x2

To maximize R(x) we need to find the critical points but it isn’t hard at all.

R′(x) = 450− x ⇒ R′(450) = 0

Hence, x = 450 is the only critical point of R(x). Noting that R′′(x) = −1 < 0 for
all x, we conclude by the second derivative test that x = 450 is indeed the local
maximum of R(x).

Since there are no more local extrema other than x = 450, it is in fact the global
maximum. Therefore, to maximize revenue, Caltech Bookstore must offer a rebate
which would cause an increase in sales of 450 − 200 = 250. This corresponds to
a rebate of $20

10 · 250 = $125! In other words, Caltech Bookstore should be selling
iPad Mini’s at $350− $125 = $225 after rebate! �

2. Convex Functions

You might have seen convex and concave functions before from highschool math
classes (some teachers say “concave up” and “concave down” for convex and con-
cave). An example of a convex function is f(x) = x2 and an example of a concave



MA 8, WEEK 7: OPTIMIZATION, CRITICAL POINTS AND EXTREMA, CONVEX FUNCTIONS3

function is g(x) = −x2. Intuitively, we think that convex functions can be mini-
mized and concave functions can be maximized. Using the second derivative test,
this would mean that convex functions should have nonnegative second derivative
and concave functions should have nonpositive second derivative. Our intuition
serves us well this time and we will see in a bit that f(x) is convex (resp. concave)
if and only if f ′′(x) ≥ 0 (resp. f ′′(x) ≤ 0).

But first, let’s give a formal definition of convex/concave functions.

Definition 1. Let f be a function. f is called convex if for all θ ∈ [0, 1] and for all
x, y we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

f is called concave if for all θ ∈ [0, 1] and for all x, y we have

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)

As we said in the beginning, we have the following proposition.

Proposition 2. f is convex (resp. concave) if and only if f ′′(x) ≥ 0 (resp. f ′′(x) ≤
0) for all x

In this week’s problem set, you will need to prove this!

Theorem 3 (Jensen’s Inequality). Let f be a convex function and let a1, . . . , an >
0. Then, for all x1, . . . , xn we have

f

(∑n
i=1 aixi∑n
j=1 aj

)
≤
∑n

i=1 aif(xi)∑n
j=1 aj

If g is a concave function, then we have

g

(∑n
i=1 aixi∑n
j=1 aj

)
≥
∑n

i=1 aig(xi)∑n
j=1 aj

You should think of Jensen’s inequality as an extension of the definition of con-
vexity/concavity of a function to more than 2 points. In short, it says that if you
have a convex function, the function’s value at the weighted average of xi’s is at
most the weighted average of f(xi)’s. And for concave functions, Jensen’s inequal-
ity says that the function’s value at the weighted average of xi’s is at least the
weighted average of f(xi)’s.

Using Jensen’s inequality, we can prove the arithmetic mean-geometric mean
(a.k.a. AM-GM) inequality. So let’s first state AM-GM inequality!

Theorem 4 (AM-GM Inequality). Let a, b > 0. Then,

a+ b

2
≥
√
ab

Proof. We could prove this using Jensen’s inequality but that would be very inef-
ficient. Instead, we will give the shortest possible proof using basic arithmetic.

We first have 0 ≤ (a−b)2 = a2−2ab+b2. Therefore, 4ab ≤ a2+2ab+b2 = (a+b)2.

Finally, putting square roots on both sides we get 2
√
ab ≤ a+ b and this gives the

desired inequality. �

That was easy! And we didn’t need to use Jensen’s inequality. Let’s try to prove
the generalized AM-GM inequality now.
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Theorem 5 (Generalized AM-GM Inequality). Let x1, . . . , xn > 0. Then,

x1 + · · ·+ xn
n

≥ n
√
x1 · · ·xn

Proof. This time, we will use Jensen’s inequality to attack this problem. Our choice
of weapon (i.e. convex/concave function)? Let’s take f(x) = log x.

First, we claim that log x is a concave function that is strictly increasing on its
domain of definition, which is (0,+∞). First, we have (log x)′ = 1

x > 0 for all
x ∈ (0 < +∞) so log x is monotone increasing. Differentiating log x another time,
we get

(log x)′′ = ((log x)′)′ =

(
1

x

)′
= − 1

x2
< 0 for all x ∈ (0,+∞)

By Proposition ?? we see that log x is a concave function.
Now, let x1, . . . , xn > 0. Then, by Jensen’s inequality for concave functions

(where we let a1 = · · · an = 1), we get

log

(
x1 + · · ·+ xn

n

)
≥ log x1 + · · ·+ log xn

n
= 1

n log(x1 · · ·xn)

= log
(

(x1 · · ·xn)
1
n

)
But we showed that log x is monotone increasing on (0,+∞). Therefore, above
inequality implies

x1 + · · ·+ xn
n

≥ n
√
x1 · · ·xn

which is precisely the generalized AM-GM inequality. �

3. More on Convex Functions

We briefly introduced concave and convex functions last time. However, in most
applications of mathematics, convex functions are much more important and are
the standard way to approach applications, so it’s worth it to become more familiar
with this notion. The only exception that I know of is economics, since concavity
there is a manifestation of the law of diminishing marginal returns. Note that the
theories of of concave and convex functions are more or less equivalent, because of
a function f is concave if and only if −f is convex.

Let’s briefly recall the definition of a convex function.

Definition 1. We say that a function f : (a, b)→ R is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

whenever a < x < b, a < y < b, and 0 < λ < 1. We say f is strictly convex if the
inequality above is strict.

The difference, intuitively, is that convex functions can have linear parts, while
strictly convex functions do not.

Remark 2. This definition is equivalent to the definition given on Tuesday, because
if λ = 0 or 1, then the inequality is always satisfied.

These two definitions are also equivalent to the one given in class (that we’ll go
over later) and it’s a good exercise to work out that the two notions are equivalent.

If a function is twice differentiable, the easiest way to characterize convex func-
tions is via the following criterion that you have to prove on your homework.
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Proposition 3. A function f is convex if and only if f ′′(x) ≥ 0 for all x.

From this, we have some obvious examples of convex functions, like

• f(x) = xn where n is even.
• f(x) = ex, arguably the most important example.

We call such functions convex because the region “above them” on a graph forms
a convex set. Recall that a subset S of Euclidean space (that, is Rn for some n)
is convex if for every pair of points in the set, the straight line segment connecting
those two points is also contained in S.

Examples of convex and non-convex sets.
Thus, we see in the case of x2 that we clearly get a convex set.
Why is f(x) = x3 not convex?
Actually you have to be careful. Just like differentiability, convexity is relative

term. Namely, f(x) is convex on x ≥ 0 and concave on x ≤ 0. You can see this by
looking at the second derivative.

The inflection point, that is, places where f ′′(x) = 0 and the sign of f ′′(x)
changes are where the function changes from convex to concave or vice versa.

Something like sin(x) is not a convex, and one way to see this is to look at the
following criterion for distinguishing convex functions, which was given in class.

Proposition 4. A function f is convex if and only if the line segment between any
two points on the graph of a function lie above the graph.

This line segment connecting these two points is called the chord. If the line is
extended infinitely in both directions, it is called a secant line. Technically, Prof.
Katz should have given his definition in class in terms of chords rather than secant
lines, but you can easily see what he meant.

One reason for the importance of convex functions is their relation to optimiza-
tion problems. For instance, a strictly convex function on an open set (that is, an
open interval) has at most one minimum, so any local minimum must be a global
minimum. Indeed, there’s a whole branch of math called convex optimization
which deals with minimizing convex functions over convex sets. A surprising num-
ber of problems can be phrased in this way.

There are also lots of industry software that allows you to solve such problems
quickly.

Remark 5. This is most relevant for functions f : Rn → R, but here in order for
a function to be convex not only does the inequality have to be satisfied, but the
set on which you are defining your function must be a convex set.

It is also important because convexity is a good way to understand exponential
growth, which underlies, of course, much of the “growth” phenomenon in the real
world. As we saw above ex is a convex function.

Roughly speaking, the distinction between exponential growth and convex growth
is the exponential growth means “increasing at a rate proportional to the current
value” whereas convex growth means “increasing at an increasing rate (but not
necessarily proportionally to current value.” We’ll see a precise formulation of this
result below.

Here are some basic operations we can do with convex functions.

• If f is convex and c > 0 is a constant, then the function cf is convex.
• If f and g are convex, then f + g is convex.
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• (This is on your homework, in the language of concave functions) If f(u)
is convex and increasing and u(x) is convex, then (f ◦ u)(x) is convex.

We’ll begin with some easy properties about convex functions.

Proposition 6. If f(x) is convex on [a, b] and is not constant, then it cannot have
a local maximum on (a, b).

Proof. Suppose that x0 ∈ (a, b) is a local maximum. Then there exists points
x1, x2 ∈ (a, b) such that x1 < x0 < x2 and so

x0 = θ1x1 + θ2x2

for some θ1, θ2 > 0 and θ1 + θ2 = 1. Moreover, f(x1) ≤ f(x0) and f(x2) ≤ f(x0),
with at least one of the two inequalities being strict. Multiply the first inequality
by θ1 and the second inequality by θ2 and then add them, to obtain

f(x0) > θ1f(x1) + θ2f(x2)

which contradicts the convexity of f . �

Proposition 7. Suppose that f is a function that is convex on x ∈ [a, b]. Fix a
points x1, x2 ∈ [a, b] with x1 < x2. Then the defining equality

f(θ1x1 + θ2x2) ≤ θ1f(x1) + θ2f(x2)

for the above x1 and x2 and for all x ∈ (x1, x2) is either always an equality or is
always strict.

Proof. Consider the function

g(x) = f(x)− `(x)− f(x) + (−`(x))

for x ∈ [x1, x2], where `(x) is chord, that is,

`(x) =
x2 − x
x2 − x1

f(x1) +
x− x1
x2 − x1

f(x2).

Then g is the sum of two convex functions and so must be convex. Furthermore,
g(x1) = g(x2) = 0. By the previous proposition, g(x) is either a constant or
it cannot have a local minimum for x ∈ (x1, x2), which corresponds to our two
results. �

Lemma 8. If f is convex in (a, b) and if a < s < t < u < b, then

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t
.

Intuitively, this says that convex functions increase at an increasing rate.

Proof. Let λ = t−s
u−s , noting that 0 < λ < 1. Then 1− λ = u−t

u−s and so

t = λu+ (1− λ)s.

Therefore,
f(t) = f(λu+ (1− λ)s) ≤ λf(u) + (1− λ)f(s)

by convexity. Plugging in our value for λ, we obtain

f(t) ≤ t− s
u− s

f(u) +
u− t
u− s

f(s),

that is,

(∗) (u− s)f(t) ≤ (t− s)f(u) + (u− t)f(s).
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From here, we just need to do a little algebra:

(u− s)f(t)− (u− s)f(s) ≤ (t− s)f(u) + (u− t)f(s)− (u− s)f(s)

(u− s)(f(t)− f(s)) ≤ (t− s)(f(u)− f(s))

and so we obtain our first inequality

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
.

Now, let’s go back to (∗) and multiply everything by −1, obtaining

−(t− s)f(u)− (u− t)f(s) ≤ −(u− s)f(t).

Once again, we do some algebra:

(u− s)f(u)− (t− s)f(u)− (u− t)f(s) ≤ (u− s)f(u)− (u− s)f(t)

(u− t)(f(u)− f(s)) ≤ (u− s)(f(u)− f(t))

and so
f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t
as desired. �

Proposition 9. Every convex function f : (a, b)→ R is continuous.

Proof. Consider real numbers a < s < x < t < y < u < b. By the lemma above,
we have

m :=
f(t)− f(s)

t− s
≤ f(t)− f(x)

t− x
≤ f(y)− f(t)

y − t
≤ f(u)− f(t)

u− t
=: M.

Since m ≤ f(t)−f(x)
t−x ≤M and m ≤ f(y)−f(t)

y−t ≤M , we have

(t− x)m ≤ f(t)− f(x) ≤ (t− x)M and (y − t)m ≤ f(y)− f(t) ≤ (y − t)M.

Therefore, we have

lim
x→t−

(t− x)m ≤ lim
x→t−

[f(t)− f(x)] ≤ lim
x→t−

(t− x)M

lim
y→t+

(y − t)m ≤ lim
y→t+

[f(y)− f(t)] ≤ lim
y→t+

(y − t)M.

Thus,

0 ≤ lim
x→t−

[f(t)− f(x)] ≤ 0 and 0 ≤ lim
y→t+

[f(y)− f(t)] ≤ 0

and so

lim
x→t−

f(x) = f(t) = lim
y→t+

f(y).

Hence, limx→t f(x) = f(t). Since t was arbitrary in (a, b), we conclude that f is
continuous on (a, b). �

Here’s a more intuitive proof that uses the “geometric” definition.

Proof. Let ε > 0. Let a be a point of the interval. Pick some x0 > a. Notice
that no matter what value f(x0) may have, the line segment between (a, f(a)) and
(x0, f(x0)) eventually lies below the horizontal line at height f(a) + ε. Since the
graph of f must lie below this line on the interval (a, x0), this shows that

f(x) < f(a) + ε
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for all x > a sufficiently close to a. A similar argument works for all x < a
sufficiently close to a.

It remains to show that f(x) > f(a) − ε for all x sufficiently close to a. If
f(x) ≥ f(a), there is nothing to prove, so suppose that f(x0) < f(a) for some x0
with x0 > a, say. Then we must have f(y) > g(a) for all y < a by convexity, so all
y < a must satisfy f(y) > f(a)− ε. Moreover, if we pick some y0 < a, then the line
segment between (y0, f(y0)) and (a, f(a)) lies above the horizontal line at height
f(a)− ε in some interval to the right of a. Since the graph of f must lie above this
line to the right of a, it follows that f(x) > f(a)− ε for all x > a sufficiently close
to a.

�

Example 10. Here’s an example of a discontinuous convex function from a closed
interval to R:

With some work, you can show that these are the only discontinuities that can
arise.

Proposition 11. Suppose that f is a continuous real function defined in (a, b) such
that

f

(
x+ y

2

)
≤ f(x) + f(y)

2
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for all x, y ∈ (a, b). Prove that f is convex.

Remark 12. Note that the converse is an immediate corollary of the definition of
convex function.

Proof. Let 0 < t < 1. For any ε > 0, there is a number k of the form m/2n which
is so close to t that

|f(kx+ (1− k)y)− f(tx+ (1− t)y)| < ε

|[kf(x) + (1− k)f(y)]− [tf(x) + (1− t)f(y)]| < ε.

Then

f(tx+ (1− t)y) < f(kx+ (1− k)y) + ε

< kf(x) + (1− k)f(y) + ε

< tf(x) + (1− tf(y)) + 2ε.

Thus f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y). The following diagram shows that if
strict inequality holds for even one t, then it holds for all t (by applying the weak
inequality to x and tx + (1 − t)y or to tx + (1 − t)y and y). But we have strict
inequality for t of the form m/2n, so we must have strict inequality for all t.

�
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