MA 8, WEEK 8: COMPLEX NUMBERS

1. CoMPLEX NUMBERS

This is one of the most beautiful stories in mathematics. For many mathemati-
cians, including myself, it is complex analysis that inspired us to become mathe-
maticians, in hopes to develop a theory as elegant, as powerful, and as beautiful as
the theory of functions of complex variables. It ties together everything you will
have learned in mathematics up to then—analysis in single and many real variables,
differential equations, linear and abstract algebra, geometry and topology—and not
only develops the theory further by synthesizing these methods, but is able to use
reflect the light from these new truths back onto the fields from whence they came.
We saw this briefly when we talked about radius of convergence, but of the course,
the subject goes much deeper.

We won’t be able to fully explore this topic, obviously, but I want to at least
show you a glimpse of what this subject holds, to entice or challenge you to pursue
mathematics beyond just the required courses.

1.1. Recap. Let’s quickly recall the facts about complex numbers that we learned
in lecture. The complex numbers C are numbers of the form

z=x4+yi
where = and y are real numbers and i is a square root of —1.

Remark 1. Just an aside for those who've seen complex numbers before. What
happens if, instead of choosing i = v/—1, we choose i = —y/—17

The amazing thing about complex numbers is each of these basic operations has
a geometric interpretation. We can identify

z=x+iyeC« (z,y) € R?

and in such a way, every complex number defines a point in the (real) plane R?
and vice-versa.
We say that the real part of z is

Re(z) ==z
and that the imaginary part of z is
Im(z) = y.

Of course, these are just the z-component and y-component respectively. If you
want to be fancy, you can say that these are “projections of z to the real and
imaginary axes, respectively.”

We can perform addition, subtraction, multiplication, and division with these
numbers, under the well-known relation that i2 = —1. Indeed, one can easily verify
the following fact.

Proposition 2. The complex numbers C form a field.
1
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The proof is just a matter of checking the field axioms, and using some familiar
properties of the real numbers along the way. However, what’s nice about the
complex numbers is that in addition to being a field, they have the following special
property.

Theorem 3. (The fundamental theorem of algebra) Any degree n > 1 polynomial
f(z) =ana™ + 12"V + -+ a1z + ag

where a; € C has a root in the complex numbers.

A field with this property is said to be algebraically closed. Why does it have
that name? Recall how we can construct C by considering R and adding the root
of the polynomial equation

2 + 1.
In other words, we can describe the new number i = /—1 by performing algebraic
operations like addition/subtraction, multiplication/division, and taking roots. The
fundamental theorem of algebra says that once you have the complex numbers, you
can’t make a bigger field by adjoining elements in this way.

Remark 4. Already, in this setting, we can ask many questions and think about
how you might answer them. For instance, what should it mean for a function
f : C = C to be continuous? We can think of C as R?. Consider the limit
definition of continuity. For real numbers, we only had to check convergence from
above or below. How many directions do we have to check here?

Of course, we’ll find out how to answer these kinds of questions in the rest of
Math 1.

The complex numbers also admit the operation of complex conjugation: that is,
given z = x + yi € C, we have its complex conjugate

Z=x— yi.

Remark 5. Physicists often use z* to denote complex conjugation. There are cer-
tain notational reasons for doing this, involving a mathematical discipline called
functional analysis, which forms the foundation for quantum mechanics.

We should view this as a function
:C—=>C
ZrZ.
It is easy to check that this is a bijection and is its own inverse, because complex
conjugation applied twice is just the identity map.

Geometrically, this corresponds to reflection across the z-axis (the real axis).
Using this geometry, it’s easy to see how basic facts about complex conjugation
are true, like how complex conjugation applied twice is the identity and how the a
number is fixed under complex conjugation if and only if the number is real.

So we clearly gain a powerful geometric perspective by considering the complex
numbers instead of the real numbers. But what have had to sacrifice in order to
gain this power? For one, we lose the ordering that we have on the real numbers,
that is, there is no way to make sense of < or > for complex numbers.

Proposition 6. There is no ordering of C that is compatible with the field opera-
tions (addition and multiplication).
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Solution. The issue, as you may have guessed, is with . Suppose that we could put

an ordering on the complex numbers and say that ¢« > 0. However, we then obtain
i?=-1>0

which is absurd and is not compatible with the usual ordering of the real numbers.
What if we set i« < 07 We have —1 < 1. Suppose that we multiply by i, so

—i > .
Since i < 0, we need to flip the inequality. Multiplying by i again, we get
—i?=—(-1)=1<i®=-1

which is absurd. O

Remark 7. This in itself is not a proof of the argument (it requires developing some
more definitions), but you can see where the essential problem lies. You get similar
issues with trying to compare real numbers in the plane. As an exercise, why won’t
the lexicographic ordering (“dictionary ordering”)

(a,b) < (c,d)
if either a < ¢ or a = ¢ and b < d, work to give an ordering on R*?

Instead of this total ordering, we have to settle for the next best thing. We begin
with the elementary observation that for z = z 4+ yi € C we have

2z =% + y2 >0
and is zero if and only if z = 0. From this, we define the magnitude

|2| = V2z = Va2 + 2.

This also has a geometric interpretation, as the (Euclidean) distance from z to the
origin, both viewed as points in R?. In other words, this is simply the magnitude
of the vector (z,y).

From the facts above, you can geometrically see the truth of the following facts.
It’s also easy to prove them algebraically.

o z+w=Z+w

¢ Z—wW=Z—w

® ZW = ZW

o z/w=7Z/w

e 2+ 7z =2Re(z)
o 2z —z = 2ilm(z)
o |z[=[z|

In short, we see that complex conjugation commutes with the field operations (i.e.
it doesn’t matter whether we conjugate before or after addition) and that it doesn’t
affect the magnitude of a complex number.

OK, as a sanity check, what is the reciprocal of a nonzero complex number
2z = x + iy, that is, the number 27! such that 227! = 2712 = 1?7
1 z z T Y

= = —1
z >z sz + y2 SUZ + y2 1'2 + y2
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1.2. The complex exponential function and trigonometric identities. An-
other great thing about the complex numbers is that multiplication also corresponds
to a geometric operation. We saw this behavior in class, but it may still be a little
mysterious as to how it works. Here we will use the tools that we have developed
so far to explain why this phenomenon occurs.

Recall that we studied the exponential function

exp(z) =€* = Z %

and showed that it has infinite radius of convergence. This implies that we can
extend this definition to the complex plane without worrying about any divergence
issues.

We also saw in class that

€] = 1
if 0 is real and that we have Euler’s identity
¢ = cosf + isiné,
of which the famous identity
€T +1=0

is a consequence.
One elementary place where Euler’s identity is useful is in proving those trigono-
metric identities that you're always forgetting. For instance, we have

(cos B 4 isinf)? = ee’? = €129 = cos 26 + i sin 26.
Therefore,
cos? @ — sin? 6 + (2 cos @ sin f) = cos 20 + i sin 26.
By comparing real and imaginary parts, we get the familiar identities
cos 20 = cos® # — sin? @
sin 260 = 2 cos 6 sin 6.

Since this is so easily derived, many mathematicians just remember Euler’s identity
and rederive the formula whenever they need to get things like triple angle identities.

1.3. Geometry of multiplication by complex numbers. From the above prop-
erties, we see that we can write any complex number z as

zZ=Te

where r = |z] and 6 € R. However, note that 6 is not unique, but that one can add
any integer multiple of 27 to it.

Example 8. For instance,
i=1e'™/?
and

i+ 1 =124,
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Remark 9. The non-uniqueness of 4 is actually a serious phenomenon that requires
some theory to get around. For instance, since the complex logarithm log(z) of
1=¢0=¢0.e2"k for k€ Z is

log(1) = {2mik | k € Z}

In other words, the complex logarithm is not a function log : C — C because it
maps one value to infinitely many values.

In complex analysis, we deal with this by choosing something called a branch
of the logarithm, that is, we simply define the complex logarithm by forcing the
0 to take values in some specific region of length 2, like [0,27) or [—m, 7). You
will explore some of the elementary consequences of this ambiguity in one of your
homework problems.

Given two complex numbers z = rie'1, w = rye’? € C, we have

2w = riree'® et = piryet1t02),

Therefore multiplication by a complex number admits a geometric interpretation;
namely, the map

$p:C— C

Z = wz

is just a stretching (if |w| > 1) or shrinking (if |w| < 1) of the complex plane
combined with a rotation.

Example 10. For instance, if w = 1, then ¢,, is just rotation by 90 degrees.
If w =1+ 1, then ¢, is stretching by v/2 and rotating by 45 degrees.
Let’s quickly investigate how this works for various subsets of C.

1.4. Geometry of “nice” maps from C to C. Note that complex conjugation
is not a map that can be given by a stretching, rotation, and translation. (There’s
no way to flip the plane across on axis by any combination of these operations.)
This difference is actually crucial and has to do with a property that is satisfied by
nice maps like ¢,, from C to itself, but is not satisfied by . However, the study
of this property (“holomorphy”) is precisely the subject of complex analysis. They
are functions that satisfy a particular differential equation. Among other things,
these maps preserve geometric properties: for instance, they preserve all angles;
and send lines to either a line or a circles and send circles to either a circle or a
lines.

An interesting fact that follows from this theory is that the function p: C — C
sending z to any polynomial p(z) is a holomorphic map. In other words, it can also
be represented as a composition of a stretching, a rotation, and a translation; in
particular it preserves angles and has all the nice properties alluded to above.

For a fun example of these nice maps, consider the map that sends a an element
to its inverse:

1:C—C
Z— =
z

Ignore the fact that this map is not strictly defined at 0, since then we would be
dividing by zero. We will deal with this issue shortly. This operation (like complex
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conjugation) is also a map that when applied twice is just the identity. This also
admits an awesome geometric interpretation.

For instance, what are the points fixed by this map, that is, what are the z € C
such that f(z) =z = 1?7 We see that this amounts to solving

Z2—1=(z-1)(z+1)

and so +1 are the fixed points of this map.

Given a circle of radius r in C, we observe that ¢ maps this circle to a circle of
radius 1/r. In particular, this map fixes the circle of radius 1.

Now, let’s make another series of observations. Suppose that we move into three
dimensions (where the z- and y-axes are given by the complex plane and z is a real
axis) and consider a (hollow) sphere whose “south pole” lies at the origin of the
complex plane. Imagine a beam shining from the north pole of the sphere. More
precisely, given a point a on the sphere, there is unique line that runs through the
north pole and a, and this line intersects the complex plane at one point, called
it z,. Then a — z, is a bijective map between points on the complex plane and
points on the ball except for the north pole:

C = sphere — {north pole}.

So we now have a separate model for C. We can think of it as a sphere minus a
point, in addition to think of it as a R? as usual.

Since actual sphere are nicer than spheres with a hole in them, let’s add a point
called “o0” to the set, so we have

C U {oo} = sphere

Consider the point co to be the north pole of this ball. Note that many properties
behave well, for instance, we can think of oo as a point of infinite distance away
from the origin, headed in any direction, and this kind of property is preserved by
this construction. For one, with this construction, we can interpret a line on the
complex plane as simply a circle on this sphere that goes through the point co.

It then turns out that we can naturally extend our function ¢ to

i: CU{oco} —» CU{o0}

1
Z = —.
z

In particular, this map is now well-defined on all points, provided that we map

00 47 = 0.

00
Using this sphere model of C U {co}, we can see that ¢ corresponds to the the map
that flips this sphere inside out, along the unit circle.

In turns out that all such “nice” functions from C to itself have this kind of
geometric interpretation. In particular, note that from this result, we see that the
property I mentioned above that circles must be sent to lines or circles and that
lines must be sent to lines or circles, is obvious from this picture. Since our only
possible operations are scaling, rotation, and translation, all such maps are just
sending circles to other circles on the sphere.
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