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ABSTRACT. We show that a natural class of local models of Shimura varieties co-

incide with certain linked Grassmannians, which arise in the theory of limit linear

series on algebraic curves. In one direction, this allows us to give a different in-

terpretation of stratifications these local models, in terms of a limit linear series

moduli problem. In the other direction, it allows us to completely characterize

the geometry of such linked Grassmannians using the group-theoretic machinery

developed for studying special fibers of local models; namely, the special fibers of

such linked Grassmannians must be unions of Schubert varieties in an appropriate

affine flag variety, indexed by a particular subset of the affine Weyl group.

1. INTRODUCTION

We want to describe an isomorphism between certain moduli spaces of limit
linear series on algebraic curves and objects that are, over p-adic rings, local mod-
els of certain Shimura varieties. Roughly speaking, it implies that the local defor-
mations of certain degenerating line bundles on curves and those of reductions
of abelian varieties with additional structure coincide. An overarching reason for
this coincidence is currently a mystery to us, especially because these spaces are
generally singular. In particular, this connection highlights some group-theoretic
structures in the theory of limit linear series and gives a natural alternative moduli-
theoretic interpretation for some structures and constructions in the theory of local
models.

Our first main result is the following theorem.

Theorem A. If Mloc =Mloc(G,L, {µ}) is a local model attached to a datum (G,L, {µ})
of unramified type A1 over a discrete valuation ringO with a choice of uniformizer π, then
Mloc is isomorphic as anO-scheme to a linked Grassmannian attached to a π-linked chain.

For the full statement of the theorem, which is more explicit, see Theorem 5.1.

Local models of Shimura varieties (see [PRS13] for a survey) are formulated
over the ring of integers of a p-adic field due to their arithmetic origins, but the

1Specifically, one associated with a parahoric subgroup and a minuscule cocharacter µ of a restric-

tion of scalars GLn over an unramified extension of local fields. See §2 for a definition and explanation

of the notation.
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definition of such a local model extends without modification to a general discrete
valuation ring, and our results also hold at this level of generality. Consequently,
using results of Osserman [Oss06] and Helm–Osserman [HO08] on linked Grass-
mannians attached to s-linked chains, we obtain an alternative proof of key geo-
metric properties of local models, such as their flatness, reducedness, normality
and Cohen–Macaulayness (proven over p-adic fields in [Gör01] and [He13]) which
also holds in our generalized context. In particular, we do not need to assume that
the residue characteristic of O is positive, which is an essential assumption in cer-
tain parts of the work of Görtz and He.

By the theory of local models as initiated by Rapoport and Zink [RZ96], an
immediate consequence of this theorem is the following result over p-adic rings.

Corollary A. Let X = Sh(G, {µ}) be a Shimura variety of PEL-type attached to a unitary
group that splits over an unramified extension of Qp. Let E denote its reflex field and
assume that X has parahoric level structure at a prime p of E. Then there exists an iso-
morphism between étale-local neighborhoods of the special fiber of the associated integral
model of X over OEp

and a linked Grassmannian attached to a π-linked chain, where π is
a uniformizer of OEp

.

In other words, this shows that the special fiber of an appropriate limit linear
series moduli problem also models the singularities of the mod p reduction of the
integral model. We view the associated linked Grassmannian as a simpler object to
study than the local model for several reasons—for one, the formulation of linked
Grassmannians do not rely on deep results about deformation spaces of p-divisible
groups or specific properties of, say, p-isogenies of abelian varieties—so the fact
that they turn out to be identical in these cases and that the linked Grassmannian
still models the singularities of the mod p reduction of the Shimura variety was
initially a little surprising to us.

Also, there are natural points and strata of the linked Grassmannian that have
natural interpretations in terms of the limit linear series moduli problem, and in
some cases, these correspond precisely to points and strata of the local model that
have been studied previously. For example, in the case of the local model asso-
ciated with the modular curve X0(p) at p, the non-exact point of the special fiber
of the linked Grassmannian attached to the p-linked chain correspond precisely
to the point of the special fiber of the local model associated with supersingular
points of the mod p reduction of X0(p) (see §1.1). Furthermore, linked Grass-
mannians attached to s-linked chains also have a number of favorable properties,
including a number of natural stratifications and a simple characterization of the
non-smooth points in terms of the limit linear series moduli problem.

Our second main result is in the converse direction.
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Theorem B. Let O be a discrete valuation ring with a choice of uniformizer π. If E• is a
π-linked chain overO, then its associated linked Grassmannian LinGr(r, E•) for any rank
r is isomorphic as an O-scheme to an unramified type A local model.

Once again, the result that we actually prove is more explicit, see Theorem 5.1

For one, this implies that the group-theoretic tools that have been used to an-
alyze the intricate geometry of special fibers of local models of Shimura varieties
can be applied to these linked Grassmannians. In particular, the irreducible com-
ponents of the special fiber are known to be orbits under the action of the corre-
sponding parahoric subgroup, which has some immediate consequences, such as
the fact that there exists a common point of intersection for all irreducible compo-
nents. Furthermore, special fibers of these local models are known to be a union
of certain Schubert varieties in an appropriate affine flag variety (e.g. [PR03]), and
moreover, we know precisely which Schubert varieties show up, as they are in-
dexed by the µ-admissible/permissible locus of the appropriate affine Weyl group
in the Iwahori case (see e.g. [Rap90, §2]). As an application, we can obtain an
explicit description of the components of such linked Grassmannians and their
intersections, resolving a question of Osserman [Oss06, A.19] in this setting. The
relation to Bruhat–Tits trees via the local model perspective can also be viewed
as a conceptual explanation as to why there exists an “adaptable basis” for linked
Grassmannians attached to s-linked chains (e.g. [EO13, Lem. 2.3], [Oss06, Lem.
A.12(ii)]). The connection to local models also indicates that these special fibers of
these linked Grassmannians come equipped not only with a torus action, but with
an action of a parahoric subgroup containing such a torus.

By combining Theorem A and Theorem B, we obtain the following corollary.

Corollary B. Over any discrete valuation ring O, an O-scheme is an unramified type A
local model of a Shimura variety if and only if it is a linked Grassmannian attached to a
π-linked chain.

While a relation between linked Grassmannians and local models of Shimura
varieties seems to have been suspected for some time—for instance, whenO = Zp,
the fact that the linked Grassmannian of rank 1 attached to a p-linked chain of
length 2 is isomorphic to the local model of the modular curve X0(p) is noted in
[HO08])—the fact that these objects are one and the same is surprising, at least
to the authors. This raises a number of natural questions. In particular, it says
that these should be a dictionary between these two types of objects, and we can
ask whether notions or constructions that are natural in one setting also admit
interpretations in the other setting, or whether different notions on each side (such
as natural stratifications of each moduli space) coincide with each other.

Before giving an overview of our overall strategy and beginning our prepara-
tions for the proof, let us illustrate our ideas in the simplest case in which the local
model and linked Grassmannians are singular. Since there is a paucity of worked
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examples of linked Grassmannians, especially a detailed study of their geometry,
we give more details about their construction than that of the respective local mod-
els. For any unexplained definitions and notation, we refer to the appropriate later
sections of the article.

Example 1.1. Consider the (compactified) modular curve X0(p) with Γ0(p) level
structure, so here G = GL2(Qp) and

P = Γ0(p) =

{[
a b

c d

] ∣∣∣∣ p | c, ad ∈ Z×p

}
⊆ GL2(Qp)

is the Iwahori subgroup, and so corresponds to the full standard lattice chain (2.1)
for n = 2.. The corresponding dominant minuscule cocharacter is µ = (1, 0) (with
respect to the torus of diagonal matrices and Borel subgroup of upper-triangular
matrices) and the reflex field is E = Qp. Thus, the corresponding local model of
X0(p) is defined over O = Zp. Let π denote a choice of uniformizer for O.

The local model in this case is obtained by the blowing up the projective line
P1Zp

over SpecZp at the origin 0 of the special fiber P1Fp
= P1Zp

×Spec Zp
SpecFp

(see, e.g. [Hai05, §4.4] for details). This visibly “locally” looks like the well-known
Deligne–Rapoport model for X0(p), whose reduction modulo p consists of two
components intersecting transversally at supersingular points [DR73].

...

SpecZp(0) (p)

FIGURE 1. The Deligne–Rapoport model of X0(p)
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SpecZp(0) (p)

FIGURE 2. The local model for X0(p), a.k.a. the linked Grassman-
nian associated to the π-linked chain of length n = 2 and rank
r = 1.

For notational simplicity, we write

O{a1, . . . , ak} := spanO{a1, . . . , ak}

for the sub-O-module of Frac(O)2 spanned by vectors a1, . . . , ak ∈ Frac(O)2.

Theorem A says that this local model is just the rank-1 linked Grassmannian
corresponding to the π-linked chain E• of length n = 2 (cf. 3.1):

E1 E2
f1

f1

FIGURE 3. The link diagram for a π-linked chain of length n = 2.

where

E1 = O{e1, e2}, E2 = O{π−1e1, e2}

and where f1 and f1 are the morphisms corresponding to the matrices

f1 =

[
1

π

]
and f1 =

[
π

1

]
.

The differing geometry of the generic and special fiber of the linked Grassmannian
reflect the fact that π = 0 on the special fiber.

The generic fiber of the corresponding Linked Grassmannian LinGr(1, E•) is
the classical Grassmannian Gr(1, 2)Qp

∼= P1Qp
. The special fiber consists of two

lines that intersect transversely and the point where they intersect corresponds to
the unique non-exact point of LinGr(1, E•) (cf. 3.2), because the only singularities
of linked Grassmannians occur at non-exact points by (Theorem 3.7). Moreover,
this is one of the few cases in the literature where there is an explicit (Zariski-)local
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description of the geometry of the linked Grassmannian over a fairly general base
scheme [HO08, Thm. 3.2].

Proposition 1.2. The special fiber of LinGr(1, E•) has a unique non-exact point.

Proof. Note that on the Ei’s, we have

Ker f1 = Im f1 = O{e1} and Ker f1 = Im f1 = O{e2}.

Condition (III) in (3.1) is trivial in this situation, so in order for the exactness con-
dition to fail, we need a linked subbundle (F1, F2) such that the restriction of the
morphisms fi and fi do not intersect the loci above.

The only possible such linked subbundle is the tuple (F1, F2) such that

F1 = O{e2} and F2 = O{e1}

where the restriction of f1 and f1 gives

Ker f1 = O{e1}

Im f1 = {0}

Ker f1 = O{e2}

Ker f1 = {0}.

�

Note that a way to deduce the structure of the special fiber of this local model is
to observe that the special fiber is the union of the closures of two Iwahori-orbits
in the affine flag variety GL2(Fp((t)))/IFp

(where IFp
is the Iwahori subgroup of

GL2(Fp[[t]]) corresponding to the upper-triangular Borel subgroup), each of which
are 1-dimensional and which meet at a point. Exploiting this kind of additional
structure is key to formulating the results in a more general setting.

Finally, we note that while the local model and linked Grassmannian turn out
to be isomorphic under the identity map given our description above, the isomor-
phism provided by Theorem between the two spaces is actually not an identity
map, although it does result in two isomorphic O-schemes. �

The proof of Theorem A and Theorem B proceed in the same way; and indeed,
we prove them at exactly the same time by producing an explicit isomorphism
in terms of the objects of the respective moduli problems. However, while it is
relatively simple to match the data defining one moduli space to another, it is
much trickier to explicitly write down the actual map. It turns out that this can be
done, to facilitate this process, we need to obtain a definition that generalizes both
the local models of Shimura varieties that we study as well as the linked Grass-
mannians that we hope to relate them to. To do so, we introduce the definition
of a generalized linked Grassmannian—which we refer to in the paper as simply
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“linked Grassmannians,” referring to the linked Grassmannians previously stud-
ied by Osserman as “classical” linked Grassmannian—and offer an alternative no-
tation and a perspective on the topic, in such a way that our desired isomorphism
between O-schemes becomes a consequence of a natural map that exists between
linked Grassmannians. For example, it turns out to be very useful to view classical
linked Grassmannian not merely as they are usually described, but to define them
in terms of periodic lattice chains, inspired by a similar definition given in the the-
ory of local models. Furthermore, when studying both the local model and the
classical linked Grassmannian from the perespective of generalized linked Grass-
mannians, it is natural to introduce an intermediate space—which we dub the the
permadeath linked Grassmannian—that allows for more obvious maps to and from
the local model and the classical linked Grassmannian.

Finally, we conclude our presentation by taking some first steps in applying
our knowledge of this isomorphism to obtain interesting results in “both direc-
tions”: we analyze the geometry of a linked Grassmannian by looking at the addi-
tional group-theoretic machinery that we have to analyze the special fiber of cor-
responding local model, and we obtain a simple “global realization” of a certain
class of local models by relating them to some previously studied moduli spaces
in the theory of limit linear series.

Acknowlegements. We thank Eyal Goren, Thomas Haines, Xuhua He, Allen Knut-
son, Elena Mantovan, Elizabeth Milićević, Brian Osserman, Michael Rapoport,
Sean Rostami, Richard Shadrach, Farbod Shokrieh, Brian Smithling, Nicolas Tem-
plier, Jan Vonk, Naizhen Zhang, and Xinwen Zhu for discussions, encouragement,
clarifications, and comments regarding the content of this paper.

2. LOCAL MODELS

We briefly recall the definition of local models, specialized to the context of
our theorem. For generalities on the theory of local models, we refer to the survey
of Pappas–Rapoport–Smithling [PRS13].

Fix an integer n ≥ 2. Let G = GLn, defined over our discrete valuation field
F with ring of integers O, and let L be a periodic lattice chain in Fn, that is, a
collection of O-lattices in Fn that is (a) totally ordered under inclusion, and (b) if
Λ ∈ L, then aΛ ∈ L for every a ∈ F×. The choice of periodic lattice chain in the
local model corresponds to the choice of a parahoric subgroup of G obtained as
the intersection of the stabilizers of a “period” in L.

Indeed, following the usual convention, we make explicit a periodic lattice
chain that is suitable for our purposes. For i = na + j ∈ Z with a ∈ Z and
0 ≤ j < n, we define the O-lattice

Λi :=

j∑
`=1

π−a−1Oe` +
n∑

`=j+1

π−aOe` ⊂ Fn,
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where e1, . . . , en denotes the standard ordered basis in Fn. Then the Λi’s form a
periodic lattice chain

(2.1) · · · ⊂ Λ−2 ⊂ Λ−1 ⊂ Λ0 ⊂ Λ1 ⊂ Λ2 ⊂ · · ·

called the standard lattice chain. Taking our periodic lattice chain L to be the stan-
dard lattice chain corresponds to the choice of the Iwahori subgroup of G (see e.g.
[Hai05, §2-3]).

Let L be a periodic lattice chain in Fn. Fix an integer 0 ≤ r ≤ n and consider
the cocharacter µ = (1(n−r), 0(r)) = (1, . . . , 1, 0, . . . , 0) of the standard maximal
torus of diagonal matrices in G. Let {µ} denote the geometric conjugacy class of µ
over an algebraic closure F of F. We recall the definition of a local model associated
with the triple (G, {µ},L) [PRS13, §2.1].

Definition 2.2. The local model Mloc =Mloc(G, {µ},L) is a functor from the cate-
gory ofOF-algebras into sets that assigns to eachOF-algebra R the set of all families
{FΛ}Λ∈L such that

(i) (rank) for every Λ ∈ L, we have an R-submodule FΛ of Λ⊗OF
R which is

Zariski-locally on SpecR a direct summand of rank r;
(ii) (functoriality) for every inclusion of lattices Λ ⊂ Λ ′ in L, the induced map

Λ⊗OF
R→ Λ ′ ⊗OF

R carries FΛ into FΛ ′ :

Λ⊗OF
R // Λ ′ ⊗OF

R

FΛ
?�

OO

// FΛ ′
?�

OO

(iii) (periodicity) for every a ∈ F× and every Λ ∈ L, the isomorphism Λ
a→ aΛ

identifies FΛ
∼→ FaΛ.

It is immediate from the definition thatMloc is a closed subscheme of a product
of finitely many copies of Gr(r, n)OF

, the Grassmannian of r-planes in n-space;
namely,Mloc ⊂ (Gr(r, n)OF

)m wherem is length of the longest “period” in L (e.g.
for the standard lattice chain (2.1), we have m = n). Furthermore, due to the
invertibility of the transition maps when we pass to the generic fiber Mloc

F , such a
family {FΛ}Λ∈L over F is determined by a single choice of FΛ for any Λ ∈ L, and
so we have an isomorphismMloc

F
∼= Gr(r, n)F.

Finer properties of the geometry ofMloc are more subtle to establish. To begin,
we have the following results of Görtz for our choice of (G, {µ},L) as above.

Theorem 2.3. [Gör01, Thm. 4.17–4.21] The schemeMloc(G, {µ},L) is flat over SpecOF
with reduced special fiber. The irreducible components of its special fiber are normal with
rational singularities (and so are Cohen–Macaulay, in particular).

Indeed, for our triple (G, {µ},L), the whole special fiber, not only its irreducible
components, are Cohen–Macaulay by a theorem of He [He13], which together
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with the generic smoothness of the special fiber given by Görtz’s theorem above,
implies thatMloc is normal by Serre’s criterion.

3. CLASSICAL LINKED GRASSMANNIANS

In this section, we recall the definition of (“classical,” i.e. finite s-linked chain)
linked Grassmannians. We refer the reader to the original papers for details and
motivation (cf. [Oss04, Chapter II], [Oss06, Appendix]) and only recall what is
necessary for our purposes. Note that, unlike local models, these linked Grass-
mannians are usually defined over an arbitrary base scheme, and their finer geo-
metric properties also hold under relatively mild assumptions. However, we will
not exploit this additional generality in the proof of our main theorem.

Definition 3.1. Let S be a scheme and let d,m ∈ Z>0. Let E1, . . . , Em be rank d
vector bundles on S. Suppose that we have morphisms

fi : Ei → Ei+1, fi : Ei+1 → Ei

for all i = 1, . . . ,m − 1. Given an s ∈ Γ(S,OS), we say that the system E• =

(Ei, fi, f
i) is an s-linked chain of lengthm and rank d if the following conditions

hold:

(I) For each i = 1, . . . ,m,

fi ◦ fi = s · idEi+1
, and fi ◦ fi = s · idEi

.

(II) On the fibers of the Ei at any point with s = 0, for every i = 1, . . . ,m − 1,
we have

Ker fi = Im fi, and Ker fi = Im fi.

(III) On the fibers of the Ei at any point with s = 0, for every i = 1, . . . ,m − 2,
we have

Im fi ∩Ker fi+1 = (0), and Im fi+1 ∩Ker fi = (0).

We say that the system E• is weakly s-linked if only conditions (I) and (III) hold.

E1 E2 E3 E4
f1

f1

f2

f2

f3

f3

FIGURE 4. The link diagram for an s-linked chain of lengthm = 4.

Let E• be weakly s-linked chain of length m and rank d and pick r < d. A
linked rank r subbundle F• ⊆ E• is an m-tuple of subbundles Fi ⊆ Ei of rank r
for i = 1, . . . ,m such that

fiFi ⊆ Fi+1, and fiFi+1 ⊆ Fi
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for all i = 1, . . . ,m− 1.

A linked subbundle is automatically weakly s-linked, but it is not generally
s-linked.

Definition 3.2. Let S be a scheme. Given an r ∈ Z>0 and an s-linked chain E•, the
(classical) linked Grassmannian LinGr(r, E•) over S is the closed subscheme of

(3.3) Gr(r, E1)×S · · · ×S Gr(r, Em)

(where Gr(r, Ei) is the rank rGrassmannian in Ei) consisting ofm-tuples (F1, . . . , Fm)

such that for i = 1, . . . ,m− 1, we have

fi(Fi) ⊆ Fi+1, and fi(Fi+1) ⊆ Fi.

These linked Grassmannians are known to have nice geometric properties un-
der mild restrictions on the base scheme.

Theorem 3.4. [HO08] If S is integral and Cohen–Macaulay, then the linked Grassman-
nian scheme LinGr(r, E•) over S is flat (over S), reduced and Cohen–Macaulay, and has
reduced fibers.

The general geometry of the classical linked Grassmannians is a little mysteri-
ous if one does not have recourse to the methods like we do in this paper. How-
ever, its power is in its abstraction and nonexplicitness and generality. Namely,
there are some general structural results that are known. It was these structural
similarities that formed the primary motivation for the project that led to this pa-
per.

It is not difficult to see that for any s-linked chain E• of rank d, the linked
Grassmannian LinGr(r, E•) exists for all r < d. It is a closed subscheme of a prod-
uct of Grassmannians (3.3), and so is projective. On fibers with s 6= 0, condition
(I) on s-linked chains implies that fi and fi are isomorphisms, so the choice of
any subbundle Fi uniquely determines the other subbundles in the chain F• =

(F1, . . . , Fn). Thus, the corresponding fiber of LinGr(r, E•) is isomorphic to the
classical Grassmannian Gr(r, d).

Thus, we see that much like the local models of §2 the more interesting behav-
ior of the linked Grassmannian occurs on fibers where s = 0. An important notion
in studying the geometry of such a fiber is the following definition.

Definition 3.5. Given an s-linked chain E• of length m and rank d on S, a mor-
phism T → S and a linked subbundle F• ⊆ E•|T of rank r, we say that F• is an exact
point of LinGr(r, E•) if on the fibers of the Fi at any point of T with s = 0, we have

Ker fi = Im fi, and Ker fi = Im fi

for all i = 1, . . . ,m− 1.

Equivalently, F• is an exact point if it is s-linked, and not just weakly s-linked.
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The exact points form an open subscheme of LinGr(r, E•) that can be explicitly
characterized.

Theorem 3.6. [Oss06, A.11] Let (F1, . . . , Fm) ∈ LinGr(r, E•) denote the corresponding
point in the linked Grassmannian associated with an s-linked chain E• of lengthm.

(i) The exact points form an open subscheme of LinGr(r, E•). Namely, they are the
complement of the closed subscheme on which

rk fi|Fi + rk fi|Fi+1
< r

for some i.
(ii) On fibers over points where where s = 0, we can describe the exact points as

those such that
rk fi(Fi) + rk fi(Fi+1) = r

for all i, even for arbitrary scheme-valued points. Furthermore, an exact point
has the property that fi(Fi) is a subbundle of Fi+1 and fi(Fi+1) is a subbundle
of Fi for all i.

The main structural results on the exact points and their relation to the geom-
etry of the linked Grassmannian are encapsulated in the following result.

Theorem 3.7. [Oss06, A.12–13] Let E• be an s-linked chain of rank d. Pick an integer
r < d. The exact points of LinGr(r, E•) are precisely the smooth points of LinGr(r, E•)

over S and are dense in LinGr(r, E•). Furthermore, the exact points are dense in every
fiber of LinGr(r, E•).

Indeed, we can characterize the non-exact points of a fiber to be precisely the intersec-
tions of the components of that fiber.

Using the smoothness at the exact points, it is not hard to deduce that the
every component of a fiber of any classical linked Grassmannian must be r(d− r)-
dimensional [Oss06, A.14].

4. GENERALIZED LINKED GRASSMANNIANS

A primary principle behind the proof of our main theorem (Theorem 5.1) is to
work with an abstraction that allows for the uniform treatment of both the local
models of Shimura varieties (§2) and “classical” linked Grassmannians (§3); which
we call generalized linked Grassmannians. From this perspective, a generalized
linked Grassmannian can be thought of as a certain flat degeneration of a classical
Grassmannian associated with a bound quiver (a.k.a. quiver with relations) and
subrepresentations of a fixed representation of such a quiver, or equivalently, as
a flat deformation of a quiver Grassmannian (attached to a bound quiver) with
uniform dimension vector. In subsequent sections, when we refer to linked Grass-
mannians, we mean in this generalized sense; when we want to refer to the linked
Grassmannians of §3, we will refer to them as classical linked Grassmannians.
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So far, the machinery of (generalized) linked Grassmannians has only been
developed for s-linked chains (cf. 3.1), i.e. classical linked Grassmannians, and
all general results on linked Grassmannians currently available in the literature
apply only in this case. However, to highlight the versatility of this framework,
we develop the rudiments of a general theory of linked Grassmannians and use it
both as a conceptual framework and as the fundamental objects that we use in our
proof.

4.1. Defining Generalized Linked Grassmannians. Let S be a scheme. General-
ized linked Grassmannians are attached to objects called link graphs, which are
essentially quivers equipped with a choice of quiver representation with uniform
dimension vector (k, k, . . . , k) and which can be chosen to satisfy certain compati-
bility conditions or relations.

Definition 4.1. Let Γ be a finite directed graph with vertex set Γ0 and edge set Γ1,
and let d ≥ 1 be an integer. Suppose that

• for every vertex v ∈ Γ0, we are given a vector bundle Ev of fixed rank d
(on S);

• for every edge e = (v1 → v2) ∈ Γ1, we have a map fe : Ev1 → Ev2 (defined
over S); and

• we impose certain link conditions that put certain restrictions on the
maps, such as their behavior under composition or on how their kernels
or images relate to each other.

We refer to this data as the link graph Γ• = (Γ, d, E•, f•).

Definition 4.2. Let r ≥ 1 be an integer such that r < d. A (generalized) linked
Grassmannian attached to a link graph Γ• is a functor LinGr(r, Γ•) from S-schemes
T to the set of #Γ0-tuples (Wv)v∈Γ0 of rank r subbundles, where

• Wv ⊆ Ev for each v ∈ Γ0, and
• for every e = (v1 → v2) ∈ Γ1, we have fe(Wv1) ⊆Wv2 .

Example 4.3. If S is affine and there are no link conditions, this is just a quiver
Grassmannian where all the submodules have the same rank r.

It is not hard to prove the following basic result.

Proposition 4.4. The functor LinGr(r, Γ•) is represented by a projective scheme over S,
which is a closed subscheme of a product of #Γ0 Grassmannian schemes over S.

Both the local models (§2) and classical linked Grassmannians (§3) are exam-
ples of linked Grassmannians, the only difference coming in their link graphs,
which are s-cyclic link graphs and s-linked chains, respectively. As the latter is
obviously a linked Grassmannian, we only need to describe the local model in the
language of linked Grassmannians.
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4.2. s-Cyclic Linked Grassmannians. We define s-cyclic link graphs and define
the corresponding linked Grassmannian, which we call the s-cyclic linked Grass-
mannian. The “unramified type A” local models of §2 are special cases of these
linked Grassmannians.

We first describe the link graph. Pick an integer m ≥ 1. Let Γ be a directed
graph withm vertices Γ0 = {v1, . . . , vm}, whose edge set is

Γ1 = {(v1 → v2), (v2 → v3), . . . , (vm−1 → vm), (vm → v1)}.

Fix an integer d ≥ 1 and let Ci denote the rank d vector bundle associated with
the vertex vi. Choose a global section s ∈ Γ(S,OS). We impose the following
link condition (Def. 4.1): for each i ∈ {1, . . . ,m}, the map Ci → Ci obtained by
composing the maps coming from a cycle of edges in Γ is multiplication by s;
namely, if we write the edges as ei = (vi → vi+1) ∈ Γ1 (where we take vm+1 to be
v1) and fei for the corresponding map, then

fei−1
◦ · · · ◦ fei+1

◦ fei = s · idEi

for all i. This data C• = (Γ, d, {Ci}
m
i=1, {fi}

m
i=1) with the corresponding link condi-

tion is what we call an s-cyclic link graph Γ• of lengthm.

Λ0 Λ1 Λ2 Λ3 Λ4

FIGURE 5. The cyclic link graph of length 5 associated with the
A4 local model with Iwahori level structure.

Definition 4.5. Let r ≥ 1 be an integer such that r < m. An s-cyclic linked
Grassmannian LinGr(r, C•) is the linked Grassmannian attached to an s-cyclic
link graph Γ• of lengthm.

Proposition 4.6. LetO be a discrete valuation ring and choose a uniformizer π ofO. The
local model over O attached to the triple (GLn, {µ},L) is a π-cyclic linked Grassmannian
LinGr(r, C•).

Proof. This is just rephrasing the definition of the local model given in (§2) into the
language of linked Grassmannians by extracting the essential data from a single
period of the periodic lattice chain. Namely, the inputs into the local model are
completely determined by the following information:

• a positive integer n, corresponding to the group GLn;

13



• a subset I = {i0, . . . , im−1} ⊂ [n] corresponding to the parahoric subgroup
P the stabilizes of the lattices Λik in a period fo the periodic lattice chain
L; and

• an integer r ∈ [n] that corresponds to the choice of minuscule cocharacter
µ of GLn.

The associated cyclic linked Grassmannian is CycLinGr(r,Λ•) where Λ• is the
cyclic link chain of length #I with ambient bundle of rank n, where the bundles
correspond to Λik for ik ∈ I. The morphisms fi are determined by the induced
maps on L. �

4.3. Defining linked Grassmannians in terms of Periodic Lattice Chains. For
our proofs, we have found it useful to view the linked Grassmannians we con-
sider as not just that of a single link diagram, but to extend the link diagram so
as to obtain a periodic lattice chain, to obtain something like definition 2.2 for the
linked Grassmannians we consider. This ends up simplifying a number of techni-
cal aspects of the proofs, especially for the linked Grassmannians that are not also
local models attached to an unramified type A datum.

For π-cyclic linked Grassmannians this is immediate from the construction we
give in §2. To do this for the the classical linked Grassmannians, we simply allow
ourselves to continue following the morphisms fi and fi of the π-linked chains.

For concreteness, we give a definition of the classical linked Grassmannian in
such a form. Let E denote the periodic lattice chain consisting of all the lattices of
the form aEi for all a ∈ F× and all Ei in the π-linked chain E•.

Definition 4.7. (Alternative Definition) The classical linked Grassmannian LinGr(r, E•)

is a functor from the category of OF-algebras into sets that assigns to each OF-
algebra R the set of all families {FE}E∈E such that

(i) (rank for every E ∈ E , we have an R-submodule FE of E ⊗OF
R which is

Zariski-locally on SpecR a direct summand of rank r;
(ii) (functoriality) for every inclusion of lattices E ⊂ E ′ in E , the induced map

E⊗OF
R→ E ′ ⊗OF

R carries FE into FE ′ :

E⊗OF
R // E ′ ⊗OF

R

FE
?�

OO

// FE ′
?�

OO

(iii) (periodicity) for every a ∈ F× and every E ∈ L, the isomorphism E
a→ aE

identifies FE
∼→ FaE.

This looks nearly identical to Definition 2.2, but the property of functoriality
has a much stronger consequence for the periodic lattice chain E coming from the
π-linked chain than from that of L associated with the π-cyclic link diagram. This

14



is because the π-linked chain has many ways to “multiply by π”—as every cycle
between two adjacent vertices gives such a way (and technically speaking, it gives
two ways, as we traverse it in both directions)—whereas the π-cyclic linked chain
has only one way; namely, by following all the maps until you return to the vertex
you started with. In particular, for π-linked chains, the multiple of π that you
see upon returning to your starting vertex indicates the number of cycles in the
link diagram that you completed in your path. For example, for E , we have not
just one, but an entire collection of inclusions between our choices of lattices. For
example, for every pair i < j of induces in E•, we have the inclusion

· · · ⊂ πj−iEj ⊂ Ei ⊂ Ej ⊂ πi−jEi ⊂ πi−jEj ⊂ · · ·

where the inclusion Ei ↪→ πi−jEi is the one coming from the composition

fi ◦ fi+1 · · · ◦ fj−2 ◦ fj−1 ◦ fj−1 ◦ · · · fi+1 ◦ fi

in E•; and there a completely analogous composition corresponding to the inclu-
sion Ej ↪→ πi−jEj. However, in addition to these “obvious” inclusions, we get
similar inclusions coming from composing the maps above in the opposite order.
Furthermore, there is also the option of not taking the “most direct” route back
to your starting vertex in inclusions above, as you can also decide to, say, loop
around some middle vertices a number of times or go back and forth along the
link diagram before returning. Finally, there is nothing special about taking just
two indices here, and this kind of nested inclusion diagram also holds for every
single collection of indices I ⊂ [n].

Despite these additional intricacies coming from the property of functoriality,
it is not difficult to see that this agrees with Definition 3.2, as they parameterize the
exact same moduli problem and are determined by the same data. Furthermore,
this kind of periodic lattice chain definition can be generalized to any link diagram
that contains cycles that correspond to a quiver relation given by multiplication.

This periodic lattice chain perspective on the local model and classical linked
Grassmannian is an immediate consequence of embedding the π-linked chain into
the Bruhat–Tits building associated with GLn(F) in such a way that respects the
maps defining the quiver.

Notation 4.8. In our proofs, we use the notation ∼ to denote moving up or down
a period in the lattice chain.

5. THE PROOF OF THEOREMS A AND B

Theorem 5.1. Let O be a discrete valuation ring and fix a choice of uniformizer π.

Let G = GLn and pick a minuscule cocharacter µ = (1(n−r), 0(r)). Write L for an
appropriate subset of the full periodic standard lattice chain, corresponding to the choice of
parahoric subgroup of G, and let I ⊂ [n] = {1, 2, . . . , n} denote the corresponding subset
of one “period” corresponding to such a choice.
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Let E• be a π-linked chain of length #I and rank n, where the morphisms fi and fi

of E• correspond to the relative positions of a the subset of a period of the periodic lattice
chain above.

Then we have an isomorphism of O-schemesMloc(G, {µ},L) ∼= LinGr(r, E•).

Roughly speaking, the proof can be described by showing that there are two
“evident” isomorphisms between three (generalized) linked Grassmannians: a π-
cyclic linked Grassmannian LinGr(r, C•) = Mloc (a.k.a. a local model whose as-
sociated group is GLn), a permadeath linked Grassmannian LinGr(r,D•), and the
classical linked Grassmannian LinGr(r, E•):

LinGr(r, C•)
Thm. 5.3

∼
// LinGr(r,D•)

Thm. 5.9

∼
// LinGr(r, E•)

The permadeath linked Grassmannian LinGr(r,D•) does not seem to have been
previously studied (we define it in §5.2), but it is a natural intermediate moduli
space for passing data between the local model and classical linked Grassmannian.

Geometrically, these isomorphisms can be viewed as “unfolding an (n − 1)-
simplex” in the Bruhat–Tits building attached to GLn over F and applying an in-
volution to the building that fixes our choice of origin vertex. In particular, it
indicates that the isomorphism of cyclic linked Grassmannian and classical linked
Grassmannian are but two of a family of similarly defined isomorphicO-schemes;
the others are linked Grassmannians attached to different configurations of link
diagrams that can also be viewed as lying in the Bruhat–Tits building.

5.1. Notation and Conventions. Fix an integern ≥ 2. For any i ∈ [n] = {1, 2, . . . , n},
we let Π(i) denote the n×n diagonal matrix with a π in the ith place and 1’s at all
other places on the diagonal. More generally, for any subset I ⊂ [n], we write

Π(I) :=
∏
i∈I

Π(i)

for the n × n diagonal matrix with a π in the ith place for all i ∈ I and 1’s at all
other places on the diagonal.

For notational simplicity, we omit the brackets for the sets I ⊂ [n] when we
explicitly list the elements of I. For example, we write Π(i1, i2, i3) := Π({i1, i2, i3})
for any subset {i1, i2, i3} ⊂ [n].

Any element Λi in the standard lattice chain (2.1) can be identified with On,
in which case the diagram

Λ0 ↪→ Λ1 ↪→ Λ2 ↪→ · · · ↪→ Λn−1 ↪→ π−1Λ0

becomes

On
Π(1)

// On
Π(2)

// · · ·
Π(n−1)

// On
Π(n)

// On,

and we work with local models under this identification, suitably extended to the
full infinite periodic lattice chain.
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We prove our results in the Iwahori setting, that is, where the corresponding lo-
cal model has Iwahori level structure; this means that all the linked Grassmanni-
ans here parameterize n-tuples (as opposed to k-tuples for some k < n) of bundles
of a chosen rank r. The cases corresponding to local models attached to a general
parahoric group follow from easy modifications of the proof in the Iwahori case.
Namely, if a general parahoric group corresponds to a stabilizer of the subset cor-
responding to J ⊂ [n] of the standard O-lattice chain, we consider the #J-tuples
corresponding to the elements at the jth position of the n-tuple for all j ∈ J.

Finally, since the generalized linked Grassmannians are moduli spaces that
represent the corresponding functors from O-schemes to sets, we can think of the
objects in our moduli spaces as (a family of) modules over an O-scheme T . Our
arguments are taken with this perspective.

5.2. Introducing: The Permadeath Linked Grassmannian.

Definition 5.2. Given an r ∈ [n], the rank r permadeath linked Grassmannian of
length n is the linked Grassmannian LinGr(r,D•) attached to the link diagramD•

D1

g1
**
D2

g1

jj

g2
** · · ·

g2

jj

gn−2,,
Dn−1

gn−2

jj

gn−1

++
Dn

gn−1

ll

where each Di is a vector bundle of rank n and the morphisms are defined to be

gi = Π(1, 2, . . . , i) =

i∏
j=1

Π(j) and gi = Π(i+ 1, i+ 2, . . . , n) =

n∏
j=i+1

Π(j).

Remark 1. The name “permadeath” (short for “permanent death”) comes from
property that if a vector is “killed” by some gi (i.e. lies in the kernel of gi) on
the special fiber, it must “stay dead” for any gj with j > i (i.e. lie in the kernel of
such a gj); similarly, if a vector is “killed” by some gi, then it must “stay dead” for
any gj with j < i.

The permadeath linked Grassmannian is close to, but is not quite, the classical
linked Grassmannian attached to a π-linked chain. In particular, condition (III)
of Definition 3.1 may fail. However, it is immediate that is nonetheless a linked
Grassmannian in the sense of §4. We do not delve into a finer study of LinGr(r,D•)

or determine its more subtle geometric properties, as they are not necessary for our
proof.

5.3. Cyclic to Permadeath.
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Theorem 5.3. There is an isomorphism of O-schemes induced by the map on objects in
the moduli spaces

LinGr(r, C•)→ LinGr(r,D•)

(F0,F1, . . . ,Fn−1) 7→ (
F0,F1, Π(1)F2, Π(1)Π(1, 2)F3,

. . . ,

n−2∏
j=1

Π(1, 2, . . . , j)

Fn−1).
Proof. From the definition of the link diagram C•, we have

(5.4) Π(i)Fi−1 ⊆ Fi

for i = 1, . . . , n − 1 and Π(n)Fn−1 ⊆ F0. Applying this relation successively, we
obtain the relation

(5.5) Π(i+ 1, i+ 2, . . . , n)Π(1, 2, . . . , i− 1)Fi ⊆ Fi−1.

As we have an obvious inverse map via the periodicity property of local mod-
els (Definition 2.2(iii)) with respect to multiplication by a power of π, the only
nontrivial part of the theorem is to show that the map is well-defined. Namely, we
need to show that

(5.6) gi

i−2∏
j=1

Π(1, 2, . . . , j)

Fi−1
 ⊆

i−1∏
j=1

Π(1, 2, . . . , j)

Fi
and

(5.7) gi

i−1∏
j=1

Π(1, 2, . . . , j)

Fi
 ⊆

i−2∏
j=1

Π(1, 2, . . . , j)

Fi−1
for all i = 1, . . . , n− 1.

For the former class of relations, we note that

gi(Π(1, 2, . . . , i− 2)Fi−1) = Π(1, 2, . . . , i)Π(1, 2, . . . , i− 2)Fi−1

= Π(1, 2, . . . , i− 1)Π(1, 2, . . . , i− 2)Π(i)Fi−1

⊆ Π(1, 2, . . . , i− 1)Π(1, 2, . . . , i− 2)Fi [by (5.4)]

⊆ Π(1, 2, . . . , i− 1)Fi,

which implies the relation (5.6).

For the latter class of relations, we note that

gi(Π(1, 2, . . . , i− 1)Fi) = Π(i+ 1, i+ 2, . . . , n)Π(1, 2, . . . , i− 1)Fi

⊆ Fi−1 [by (5.5)],

which implies the relation (5.7). �
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The above proof is very slick but is also quite opaque, hiding almost all of the
intuition behind the existence of the map in the first place and why the permadeath
linked Grassmannian is a natural object to consider in its own right. We include
the following alternative proof of the statement above, as it highlights the more
geometric aspects of the picture. It is not as self-contained and we have to use
the both the known geometric properties and the isomorphism we prove in the
following section to conclude our result, but it illustrates a little better what exactly
is going on under this map and why this is actually a natural intermediate step and
so is simpler than trying to pass to the classical linked Grassmannian directly.

Alternative Proof of Theorem 5.3. Let (F1, F2, . . . , Fm) be an m-tuple of cyclic linked
subbundles, that is, a point in LinGr(r, C•). (Note that this indexing convention is
not the same as the one used in the above proof.) Each Fi can be represented as a
lattice generated by r vectors

Li := O{vi1, . . . , vir}

where a generating vector is of the form

vij = a
i
j(1)e1 + a

j
i(2)e2 + · · ·+ a

j
i(m)em =: O([aij(1), . . . , aij(m)]) ∈ Om,

and the cyclic linked condition imposes some compatibility conditions on the co-
efficients aij(k).

Consider the m-tuple of subbundles (F ′1, F
′
2, . . . , F

′
m), where F ′i corresponds to

a rank r lattice L ′i where

L ′i = O{wi1, . . . , wir}

where each generating vector is of the form

(5.8) wij = O([πi−2aij(1), πi−3aij(2), . . . , πaij(i− 2), aij(i− 1), aij(i) . . . , aij(m)]).

These subbundles (F ′1, F
′
2, . . . , F

′
m) define a point in LinGr(r,D•), because the sub-

bundles inherit the linked structure of the cyclic link graph and the insertion of
the powers of π’s in (5.8) ensures that the “permadeath property” holds.

We now want to show that the rule (F1, . . . , Fm) 7→ (F ′1, . . . , F
′
m) gives us an

injective map

LinGr(r, C•) ↪→ LinGr(r,D•).

On O-points of the respective functors, we see that the coefficients as defined
above are uniquely determined by their behavior on the special fiber and the
generic fiber. If two tuples of subbundles in LinGr(r, C•) map to the same bun-
dle of LinGr(r,D•), the coefficients above must be identical. This is because they
are, of course, isomorphic on the special fiber, where π = 0, but we can detect the
power of π of the realization (5.8) by looking at the generic fiber.
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We have the commutative diagram

LinGr(r, C•) //

��

LinGr(r,D•)

��∏m
i=1Gr(r,Λi) // Gr(r, E1)×Gr(r, E2)×

∏m
i=3Gr(r, E ′i) =: G.

Since LinGr(r, C•) and LinGr(r,D•) ∼= LinGr(m−r, E•) are both flat over the spec-
trum of the discrete valuation ring O (by [Gör01] and [HO08] respectively) and
their generic fibers are equal (not just isomorphic!) as subschemes of G, by the
valuative criterion for flatness [Gro67, EGA IV.3, 3.11.8], the two O-schemes are
isomorphic as subschemes of the product of Grassmannians G. �

5.4. Permadeath to Classical.

Theorem 5.9. There is an isomorphism of O-schemes induced by the map on objects in
the moduli spaces

LinGr(r,D•)→ LinGr(r, E•)

(G1,G2, . . . ,Gn) 7→ (
G1, Π(2, . . . , n)2G2, Π(2, . . . , n)2Π(3, . . . , n)2G3,

. . . ,

n−1∏
j=1

Π(j+ 1, j+ 2, . . . , n)2

Gn)

Notation 5.10. We have changed the indexing convention here to start from 1 in-
stead of 0; this correspond better to the maps fi and fi of the linked diagram for
the classical linked Grassmannian of length n. For cyclic linked Grassmannians,
we started our indices from 0 so as to better agree with the conventions in the lit-
erature for local models; namely, so that the indices of the subbundles agrees with
the indices of the elements in the standard lattice chain (2.1) that correspond to the
ambient space for such a subbundle.

Proof. The argument is similar in spirit to that of Theorem 5.3. By the definition of
the morphisms in the permadeath link diagram D•, we have

(5.11) gi(Gi) = Π(1, 2, . . . , i)Gi ⊆ Gi+1

and

(5.12) gi(Gi+1) = Π(i+ 1, i+ 2, . . . , n)Gi+1 ⊆ Gi.

Again, we have an obvious inverse map by using the periodicity property of
generalized linked Grassmannians. Thus, it only remains to show that the map is
well defined, by showing that
(5.13)

fi

i−1∏
j=1

Π(j+ 1, j+ 2, . . . , n)2

Gi
 ⊆

 i∏
j=1

Π(j+ 1, j+ 2, . . . , n)2

Gi+1
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and
(5.14)

fi

 i∏
j=1

Π(j+ 1, j+ 2, . . . , n)2

Gi+1
 ⊆

i−1∏
j=1

Π(j+ 1, j+ 2, . . . , n)2

Gi
for all i = 1, 2, . . . , n− 1.

For the former class of relations, we note that

fi (Gi) = gi (Gi)

= Π(i+ 1, i+ 2, . . . , n)Gi

∼ Π(1, 2, . . . , i)Π(i+ 1, . . . , n)2Gi

⊆ Π(i+ 1, . . . , n)2Gi+1 [by (5.11)],

which implies the relation (5.13).

For the latter class of relations, we note that

fi
(
Π(i+ 1, i+ 2, . . . , n)2Gi+1

)
= gi(Π(i+ 1, i+ 2, . . . , n)

2Gi+1)

= Π(1, 2, . . . , i)Π(i+ 1, i+ 2, . . . , n)2Gi+1

⊆ Π(1, 2, . . . , i)Π(i+ 1, i+ 2, . . . , n)Gi [by (5.12)]

∼ Gi,

which implies the relation (5.14). �

5.5. Why do we need to pass through something like the permadeath linked
Grassmannian in order to obtain the correct linked diagram? The procedure
above is simple and general, but we feel as if an example would clarify why we
have to perform this seemingly convoluted procedure in order to obtain the cor-
rect doubled quiver with relations (the π-linked chain) to which we attach a linked
Grassmannian of the appropriate rank.

Example 5.15. Let’s consider the case of G = GL3 with Iwahori level structure
(i.e. I = {0, 1, 2}), so we are concerned with the local model Mloc =Mloc(G,P, µ)
attached to

(G,P, µ) = (GL3, I = {0, 1, 2}, µ = (1, 0, 0)).

The corresponding bound quiver C• is the cyclic link diagram of length 3where a
full cycle corresponds to multiplication by π. In other words, we have

C1 = O{e1, e2, e3}

C2 = O{πe1, e2, e3}

C3 = O{πe1, πe2, e3},
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where the transition maps are given by

C1

[π
1
1

]
// C2

[
1
π
1

]
// C3[

1
1
π

]
jj

To turn C• into a doubled quiver that looks like a π-linked chain, we can naively
try to construct maps fi : Ci → Ci−1 for i = 1, 2 by taking compositions of the
maps above. By doing this, we obtain the following chain:

C1

[π
1
1

]
++
C2

[
1
π
1

]
++

[
1
π
π

]kk C3[
π
1
π

]kk

However, this is not a π-linked chain, because on the special fiber where π = 0, we
have

Im(f2) ∩Ker(f1) = O{e2} ∩ O{e2, e3} = O{e2} 6= 0,

which violates condition (III) of (3.1). Thus, we must do something different in
order to end up with a π-linked chain.

Thus, we consider the permadeath linked chain D• = D•(C•) associated with
the cyclic link diagram C• is given by

D1

[π
1
1

]
++
D2

[
π
π
1

]
++

[
1
π
π

]kk D3[
1
1
π

]kk

which is still not a π-linked chain because it violates condition (III) of (3.1): the
image of the top left map intersects the kernel of the top right map nontrivially,
namely, on O{e2}. But by “exchanging” the upper and lower maps of the per-
madeath link diagram, we obtain the chain E• given by

E1

[
1
π
π

]
++
E2

[
1
1
π

]
++[π

1
1

]kk E3[
π
π
1

]kk

which is indeed a π-linked chain. �

Remark 2. On the special fiber of the example above, the ranks of the maps f1
and f2 of E• are increasing, and moreover are of rank i1 − i0 = 1 − 0 = 1 and
i2 − i0 = 2 − 0 = 2, respectively. This “rank-increasing” property is an easy
consequence of the maps defining a π-linked chain, and it is seen to be a result of
the successive compositions that occur in the construction.
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6. APPLICATION: ANALYZING THE GEOMETRY OF LINKED GRASSMANNIANS

We apply the fact that certain linked Grassmannians are unramified local mod-
els and use this to study the geometry of the special fiber. We are currently work-
ing on trying to apply this knowledge about local models to analyze some prob-
lems in the theory of limit linear series [Hwa18], but here we give some previews
of how the machinery of local models can be used to understand linked Grass-
mannians.

Linked Grassmannians attached to link diagram consisting of a single point
are simply Grassmannians, so let’s consider the next non-trivial class of cases, at-
tached to a π-linked chain of length 2. We saw in Example 1.1 that if the associated
dimension vector is (2, 2), and we take the rank 1 linked Grassmannian, then we
recover local model of the modular curve X0(p). It turns out that the case of a
general dimension vector (d, d) and rank r is not much harder.

Example 6.1. (Maximal parahoric case) By our theorem, this is precisely the linked
Grassmannian studied in [Oss06, Example A.17]. Let E• be a π-linked chain of
length 2 and rank d. Writing d1 = rk f1 and d1 = rk f1 for the ranks of the maps
in the chain, it turns out in the associated linked Grassmannian LinGr(r, E•) for
r < d, there are

` = min{r+ 1, d− r+ 1, d1 + 1, d2 + 1}

irreducible components, each of which are r(d − r)-dimensional, and the compo-
nents are indexed by the dimension of f1(V1) on general points. This is agrees
precisely with the description given by picking out the elements of the Iwahori
orbits parameterizing the µ-admissible set for GLd, where µ = (1(n−r), 0r). This
is even easier to see if you use the µ-permissible set, via the equality given by
Kottwitz–Rapoport [KR00]

6.1. A Global Geometric Realization of the Local Model. One interesting corol-
lary of our theorem is that it shows that global realizations of these local models
have already been constructed and studied in literature on limit linear series. One
particular instance occurs for what we call Esteves–Osserman (EO) varieties, as
they were initially studied by Esteves and Osserman in their work relating limit
linear series and fibers of Abel maps in the case of two curves joined at a single
node [EO13]. An alternative approach to studying such varieties in greater gener-
ality was developed by one of us [Li13]. Here, we present a simplified, concrete
approach that complements the ones mentioned above.

Our goal in this section is to apply the following consequence of our main
theorem (Theorem 5.1).

Corollary 6.2. Let O be a discrete valuation ring. If Mloc is a local model attached to
the triple (G, {µ},L) of unramified type A whose associated minuscule cocharacter µ is
assumed to be of Drinfeld type, thenMloc is isomorphic to an Esteves–Osserman varierty.
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The notion “of Drinfeld type” means that the rank r of the relevant linked
Grassmannian is either of dimension 1 or codimension 1. In this setting, explicit
equations for this particular local model were also studied by Faltings [Fal97, §4]
and Görtz [Gör01] [Gör04]. Both approaches yield different realizations of the
same ideals on the relevant local coordinates, but a fundamental difficulty that
arises in following these approaches is that the relevant ideals are constructed
using equations that come from matrix relations, and it is very tricky to use el-
ementary methods to prove certain geometric properties (e.g. show that varieties
are reduced, that is, that the ideals generated by such relations are radical) without
making a number of strong assumptions or limiting ourselves to low-rank settings.

However, by realizing this local model as an EO variety leads to quick proofs
of many geometric properties of the local model that usually require much more
machinery to be developed (e.g. a characterization in terms of affine Weyl groups,
notions of µ-admissibility or µ-permissibility, etc.) and gives what seems to be
the first cases in the literature of a global (as in not just gluing coordinate patches)
geometric realization of a local model of a Shimura variety which is not that of the
modular curve X0(p) over Zp.

The basic results for what we call an Esteves–Osserman variety is developed in
[EO13, §4], but it uses a language that is very different from that used in this paper,
so we give a more elementary definition of such a variety, at the cost of possibly
obscuring some of the connections to notions from the theory of limit linear series
on curves.

Definition 6.3. An Esteves–Osserman (EO) linked graph V• is a chain of rank m
vector bundles

V1
**
V2

**
jj · · · **

jj Vdjj

where each edge e = (s(e), t(e)) ∈ EV• is labeled with the additional data of an
integer re ∈ (0,m) ∩ Z+.

Let S be an arbitrary scheme.

Definition 6.4. An Esteves–Osserman (EO) linked Grassmannian is the S-scheme
representing the generalized linked Grassmannian attached to an EO link graph,
where the induced maps fe : Vs(e) → Vt(e) on each tuple of subbundle must have
rank re.

Definition 6.5. An Esteves–Osserman (EO) variety is a subvariety obtained as
the image of the embedding of the EO Linked Grassmannian associatd with an
EO linked graph V• into P(V1) × P(Vd) by mapping each element of a point F•
of the Linked Grassmannian by using the map obtained by following the shortest
path to the extremal vertices V1 and Vd and taking the Zariski closure of the union
of the induced rational maps.
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Example 6.6. Consider the EO variety attached to the chain

V1
1
**
V2

2
**

2

jj V3

1

jj

and label the maps f1, f1, f2, f2 as we usually do for an s-linked chain, where the
numbers above denote the ranks of the maps (e.g. f1 : V1 → V2 is a rank 1 map).
For each Vi, there exist a unique shortest composition of maps that gives a map
g1i : Vi → V1 and g3i : Vi → V3. For example, f11 = idV1

and g21 = f2 ◦ f1. These
gji’s are only rational maps, since they are not defined on the kernels.

We will consider the images of these maps. The map

g1 := (g11, g
3
1) : P(V1) // P(V1)× P(V3)

has image P2 × {pt}. The map

g2 := (g12, g
3
2) : P(V2) // P(V1)× P(V3)

has image P1 × P1. The map

g3 := (g13, g
3
3) : P(V3) // P(V1)× P(V3)

has image {pt}× P2.

The closure of the images of these maps

X = (Im(g1) ∪ Im(g2) ∪ Im(g3)) ⊂ P(V1)× P(V3)

is an example of EO variety. This X also admits a description as a Mustafin de-
generation of P2 (i.e. a Mustafin variety, cf. [CHSW11], related to questions of
p-adic uniformization and aspects of tropical geometry), which has three compo-
nents C1, C2, C3 corresponding to the images of the three maps. They all intersect
each other; indeed, we have

Ci ∩ Cj = Im(gi) ∩ Im(gj).

By Theorem 6.2 and matching the data to that of the local model, we see that
this is nothing other than the local model of attached to GL3, a cocharcter µ of
Drinfeld type, and Iwahori level structure. Thus, this gives us a concrete global
realization of this local model. �

6.2. EO Varieties are classical linked Grassmannians. We prove Corollary 6.2
by proving the following result, which seems to be new, although Osserman has
informed us that the structure is somewhat implicit in the work [EO13].

Theorem 6.7. An Esteves–Osserman (EO) variety is a linked Grassmannian attached to
an s-linked chain.
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Before we prove this result, we develop some definitions. Let (v1, . . . , vd) rep-
resent a point in the EO variety X =

⋃
i Im(gi). The proofs of the following almost

trivial four results just involve unwinding the definitions using the notions de-
fined above.

Proposition 6.8. There exists a smallest integer k (the left index) such that fk(vk) =

vk+1.

Proof. This follows from conditions (II) and (III) of an s-linked chain (3.1). �

Proposition 6.9. There exists a largest integer j (the right index) such that fj = fj(vj+1).

Proof. Just like the proof of the previous proposition, this follows from conditions
(II) of (III) of an s-linked chain. �

Proposition 6.10. For exact points, the left index coincides with the right index.

Corollary 6.11. Let ~v = (v1, . . . , vd) represent a point in the Linked Grassmannian
with left index k and embed LinGr ↪→ P(V1) × P(Vd). Then ~v lies in the image of
gk : P(Vk)→ P(V1)× P(Vd).

Proposition 6.12. For non-exact points, the left index is one less than the right index.

Corollary 6.13. Let ~v = (v1, . . . , vd) be a point in LinGr with right index k, and embed
LinGr ↪→ P(V1)× P(Vd). Then ~v lies in the image of

gk : P(Vk)→ P(V1)× P(Vd)

and

gk−1 : P(Vk−1)→ P(V1)× P(Vd).

We can now use these corollaries to prove our main theorem.

Proof of Theorem 6.7. Since the exact points of a Linked Grassmannian are open and
dense, the Linked Grassmannian and the EO variety agree on dense opens and are
closures in the same ambient space P(V1) × P(Vd). Thus, they yield isomorphic
varieties. �

Since the construction of the EO variety is very concrete, we can even give a de-
scription of the global geometry of the local model without even needing to make
making use of machinery used to study the special fiber, such as the µ-admissible
set in the affine Weyl group.

Example 6.14. Consider the example 6.6 given previously. This is actually the
local model of a PEL Shimura variety of type A2 with Iwahori level structure and
minuscule cocharacter of Drinfeld type. There are a number of properties known
about this local model, but we will show how many of them can be obtained by
using the basic techniques developed to study EO varieties.

26



There are three irreducible components C1, C2, C3, which come from the clo-
sures of the rational maps gi : P(Vi)→ P(V1)× P(V3) for i = 1, 2, 3.

Around the singularity that occurs from the two copies of P2 touching, the
realization of the equations for the local model (or the image of the rational map)
shows that its local ring is given by

O[x, y, z]/(xyz− π).

In particular, this shows that the local model has semistable reduction. In particu-
lar, it shows that the non-codimension 1 singularity that occurs from the meeting
of P2’s is transformed into a Cohen–Macaulay singularity by inserting a copy of
P1 × P1 that runs through the intersection of the two copies of P2.
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