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ABSTRACT. We give a proof of the Kronecker–Weber theorem using the deforma-

tion theory of one-dimensional Galois representations associated with algebraic

Hecke characters and corresponding “level-lowering” and “modularity lifting”

theorems for such representations.
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1. INTRODUCTION

One of the first definitive results in what we now know as class field theory is
the Kronecker–Weber theorem, which is commonly stated as follows.

Theorem 1.1. (Kronecker–Weber) Any finite abelian extension of Q is contained in a
cyclotomic extension of Q.

There exist a multitude of proofs of the result, from strictly elementary treatments
(e.g. [Mar77, Exer. 4.29–38]) to ones that derive it from the statements of class field
theory, either local or global. (See [Neu81, §6] for a historical overview and refer-
ences to a number of different proofs, and [Sch98, §2] for some additional context.)
However, our approach—using the deformation theory of Galois representations
and an appropriate “R = T” theorem obtained by comparing numerical invariants
from commutative algebra—does not yet seem to exist in the literature. It is not the
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most direct proof and far from the shortest, but it turns out to be natural in many
ways. Indeed, the key steps follow from one-dimensional analogues of the results
needed for the modularity theorem (a.k.a. Taniyama–Shimura–Weil conjecture)
for semistable elliptic curves over Q as proved by Wiles [Wil95] and Taylor–Wiles
[TW95] towards a proof of Fermat’s Last Theorem. So in a concrete sense, not only
is the modularity theorem a “higher Kronecker–Weber theorem,” but we can also
adapt its method of proof to reprove the classical result.

With this in mind, we reformulate the Kronecker–Weber theorem in the fol-
lowing fashion, which resembles the L-function form of the modularity theorem
for elliptic curves over Q [BCDT01].

Theorem 1.2. Let K be an abelian extension of Q with Galois group G = Gal(K/Q).
Given a continuous representation ρ : G → GL1(C), there exists a unique primitive
Dirichlet character χ such that

L(ρ, s) = L(χ, s).

(See §6.2 for details and how this implies Theorem 1.1.) To prove Theorem 1.2, we
show that for any such character ρ, its corresponding representation of the abso-
lute Galois group GQ := Gal(Q/Q) is “modular,” in the sense that it is associated
with an algebraic Hecke character—the one-dimensional or abelian analogue of
the Hecke eigenforms that are associated with elliptic curves over Q in the modu-
larity theorem.

The main technical result required for our proof of Theorem 1.2 is the fol-
lowing one-dimensional version of a theorem of Ribet [Rib90], which essentially
says that the property of being modular is preserved under congruences modulo
p (“modularity is contagious”) and can be viewed as “modularity lifting theorem”
in this context. The bulk of the paper is devoted to making the relevant notions
precise and in assembling the ingredients required for its proof.

Theorem 1.3. Let (O,mO) be a complete noetherian local ring with finite residue field
O/mO and let ρ0 : GQ → GL1(O) be a Galois representation that is modular, in other
words, ρ0 ∼= ρχ0 for some algebraic Hecke character χ0 (see Proposition 2.8; in particular,
this implies that O is the ring of integers of a finite extension of Qp). If

ρ : GQ → GL1(O)

is any Galois representation such that its residual representation ρ : GQ → GL1(O/mO)
is isomorphic to the residual representation ρ0 : GQ → GL1(O/mO) of ρ0, then ρ is also
modular.

Theorem 1.3 is used to “eliminate primes from the level,” allowing for an induc-
tion argument on the set of ramified primes in our abelian extension of Q. Once
we have applied Theorem 1.3, we are reduced to analyzing certain classes of de-
formations of these modular residual Galois representations, where we can appeal
to some general results in algebra that are used to address the analogous questions
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for two-dimensional Galois representations. The theory simplifies considerably in
the one-dimensional setting; many of the intermediary results can be given bare-
handed proofs, in contrast to those in the two-dimensional setting, which often
require deep inputs from Galois cohomology or the geometry of Shimura curves.
This has the pleasing consequence of making our entire argument more or less
self-contained—including the deformation-theoretic aspects—with the sole excep-
tions being a couple of results from commutative algebra (§4.4) that we quote for
the sake of brevity, as they are not simplified by specializing to GL1. To avoid any
chance of a circular argument, we take pains to avoid relying on any general re-
sults from class field theory, only using a simple statement from Kummer theory
(Theorem 5.3) that we need as an input from the theory of cyclotomic fields. (For
a proof of the Kronecker–Weber theorem via generalized Selmer groups that does
use class field theory, see [CSS97, IV, §5, p.112-3].) In particular, we do not make
use of the Poitou–Tate exact sequence or cohomological duality theorems, which
are crucial for the corresponding proofs of the theorems for two-dimensional Ga-
lois representations.

Like many number-theoretic results, proofs of the Kronecker–Weber theorem
require special considerations at the prime p = 2, with the case of extensions of Q
with degree a power of two being tricky to address and a notorious source of errors
in both initial attempts at a proof (see, e.g. [Neu81, §4–5]) as well as in potential
generalizations (see, e.g. [Sch98, §3]). Our deformation-theoretic approach is no
exception to this rule, and we deal with the p = 2 case in each result where the
assumption plays a role. Our input from local fields (Lem. 5.1) also requires us to
separate these two cases, due to the different structure of the p-extensions of Qp.
However, encoding this separation in general lemmas allows us to treat all primes
uniformly in our culminating argument.

One motivation for pursuing this kind of proof of the Kronecker–Weber the-
orem is that the objects involved tend to generalize better to number fields other
than Q. Indeed, the naive generalization of the Kronecker–Weber theorem in its
classical form (Theorem 1.1) to number fields beyond Q is false; the abelian exten-
sions of even a quadratic extension of Q are not necessarily contained in a cyclo-
tomic extension (e.g. the extension Q( 4

√
2) over Q(

√
2)). However, generalizations

of the statement of Theorem 1.2 are more robust. Of course, any such generaliza-
tions of Theorem 1.1 and 1.2 require care in establishing relations between them.
At several crucial points, the arguments establishing the connection in the case
of Q in §6.2—and importantly, certain key lemmas for our main argument and
Theorem 1.3—rely on certain facts that are special to Q. Many of the difficulties
in generalizing the Kronecker–Weber theorem are well-known and long-standing.
Importantly, aside from the case of CM-fields, which can be approached with the
theory of complex multiplication, it is still unknown what class of extensions of
the base field (analogous to the cyclotomic fields for Q) are required to contain all

3



the abelian extensions, even for the case of real quadratic extensions (cf. Hilbert’s
12th problem or Kronecker’s Jugendtraum). However, some recent advances in the
subject also rely on inputs from automorphic forms and Galois representations
extending the results of Ribet [Rib90] as well as novel p-adic methods, especially
in the case of totally real fields (see, e.g. [DK22] for a recent survey). Do such
thematic reprisals point to a potential summit or merely indicate a scenic vista at
which to collect ourselves for a more arduous journey? Only time will tell.

GL2(Q) GL1(Q)

modularity theorem Kronecker–Weber theorem
Hecke eigenform algebraic Hecke character

level N ≥ 1 conductor N ≥ 1
weight 2 weight 0

modular curve X0(N) (Z/NZ)× ' Gal(Q(µN)/Q)

its Jacobian J0(N) (Z/NZ)× ' Gm(Z/NZ)
Hecke algebra TN ⊂ End(J0(N)) the group ring O[[(Z/NZ)×]]

FIGURE 1. Analogous objects in the GL2(Q) and GL1(Q) cases.

“Surely this must be written down somewhere...”. The fact that a “GL1-version
of the modularity theorem” would lead to the Kronecker–Weber theorem seems
to have long been a part of the folklore, but the only concrete reference we could
find was a passing remark of Kowalski [Kow03, Rem. 5.4] that refers to a Rut-
gers University graduate course taught by Tunnell in academic year 1995–1996.
We dedicate this article to Jerry’s memory. (May our cycles continue to spin, far
beyond the Finger Lakes.) We hope that our streamlined presentation at least im-
proves upon the argument’s accessibility.

In the years following the proof of Fermat’s Last Theorem, there have been a
number of references summarizing and elucidating various aspects of the argu-
ment. We recommend [DDT94] and [CSS97] for comprehensive treatments and
elaborations of the themes that we touch upon here, and [Dar95] and [DI95] in
particular among the abridged treatments, as they take useful perspectives and
highlight connections that are less emphasized in the longer works above but were
useful in making clear the analogies between the GL2 and GL1 cases (Fig. 1) that
guide our approach.

2. ALGEBRAIC HECKE CHARACTERS OVER Q

The “modular” or “automorphic” objects that we wish to associate with our
one-dimensional Galois representations are the algebraic Hecke characters (a.k.a.
Grossencharacters of type (A0) [Wei56]) over Q, which are often studied today as
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the algebraic automorphic representations for GL1 over Q. (The modular forms
of weight 2 associated with elliptic curves over Q correspond to certain algebraic
automorphic representations of GL2 over Q.) As we do not require the additional
flexibility of the adelic formulation for our argument, we give a treatment in the
classical idèlic language, following [Del77, Ch. 6, §5], specialized to the case of Q.
We are primarily interested in the conductor of an algebraic Hecke character and
its behavior under congruences, and the relevant phenomena are more concrete
when phrased in terms of the idèles.

2.1. Definition and classification of algebraic Hecke characters over Q. Let E be
a number field, N ≥ 1 an integer (equivalently, a ideal of Z), and T =

∑
nσσ ∈

Z[Hom(Q, E)] a Z-linear combination of embeddings of Q into a fixed choice of
algebraic closure E for E.

Definition 2.1. Let IN denote the group of fractional ideals of Z (a.k.a. ideals of
Q) that are prime to N. An E-valued algebraic Hecke character χ (over Q) of
infinity-type T and conductor dividing N is a group homomorphism

χ : IN → E×,

with the following property: for any principal ideal (α) ∈ IN generated by an
α ∈ Q× such that α ≡ 1 (mod N), we have

χ((α)) = αT =
∏
σ

(ασ)nσ = αm (2.2)

for a fixed integerm ∈ Z.

We note, in particular, that the choice of infinity-type T of an algebraic Hecke
character is equivalent to the choice ofm ∈ Z in this setting.

Remark 2.3. Definition 2.1 is equivalent to the notion that the corresponding auto-
morphic representation of GL1(Q) is algebraic—indeed, it is the case that inspired
the definition [Clo90]. It is also equivalent to the condition that the corresponding
Galois representation (see Prop. 2.8) is de Rham at the prime equal to the residue
characteristic.

If N | N ′, the characters of conductor dividing N can be identified with the
corresponding characters of conductor dividing N ′ under the restriction to IN ′ ⊆
IN. The smallestN (with respect to ordering by divisibility) such that χ extends to
a character of conductor dividingN is called the conductor of χ, which we denote
by N(χ). A Hecke character χ of conductor dividing N(χ) is said to be primitive.

Remark 2.4. It is traditional to denote the conductor of a Hecke character by f (for
the German term Führer), but we use N (for the French term niveau) so as to more
closely reflect the notation and analogy with the level of a modular form and its
Galois representation.
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While we do not describe general Hecke characters, as non-algebraic Hecke
characters play no role in our argument, it is worth noting that whether a Hecke
character is algebraic or not depends only on its infinity-type T ; the integer N
plays no role in algebraicity. Namely, in the context of Hecke characters over Q,
being algebraic means that the correspondingm in condition (2.2) is an integer and
not, say, an arbitrary real or complex number. The seemingly innocent “integral”
property of the infinity-type yields some significant consequences.

For example, all algebraic Hecke characters χ satisfy a strong homogeneity
condition: for any embedding E ↪→ C, we have an induced action of complex
conjugation ¯ on Hom(Q, E) and for any σ ∈ Hom(Q, E)1, we have

nσ + nσ = k ∈ Z,

where k is called the weight of χ (or more precisely, of its infinity type T ). Thus,
for any complex conjugation on E, we have

χ · χ = Nk,

where N is the norm, that is, N(a) = #(Z/a) for any integral ideal a of Q (i.e. ideal
of Z). Hence, the values of an algebraic Hecke character are pure, in the sense that
all its embeddings into C have the same absolute value.

To illustrate these more abstract concepts, we describe the two “extremal”
cases of algebraic Hecke characters.

Example 2.5. Dirichlet characters are the ur-examples of algebraic Hecke charac-
ters and the source of much of the terminology. Any Dirichlet character (i.e. group
homomorphism) χ : (Z/NZ)× → C× can be viewed as an algebraic Hecke charac-
ter of weight 0 and conductor dividingN, and vice versa. If the Dirichlet character
χ is primitive, then N(χ) = N.

Example 2.6. The norm character N is itself an algebraic Hecke character of con-
ductor N(N) = 1.

Algebraic Hecke characters of finite order are precisely those with trivial infinity-
type (equivalently, weight k = 0). In particular, this implies that every algebraic
Hecke character χ over Q is of the form

χ = µ ·Nr

where µ is of finite order and r ∈ Z. (Over nontrivial extensions of Q, the classifi-
cation is not as simple, so this is already one place where working over Q makes
things easier.) This factorization of algebraic Hecke characters over Q is useful al-
most everywhere they appear. Using the identification between finite-order char-
acters and Dirichlet characters, we write µ = χDir for this “finite order part” of χ,
where χDir : (Z/N(χ)Z)× → C× is the corresponding Dirichlet character.

1Again, there is really just one here, but we maintain this distinction for the sake of clarity.
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The field of values of an algebraic Hecke character is a finite extension Lχ of
Q. Indeed, Lχ is either Q or a CM field; this property also leads to interesting
arithmetic phenomena, but such properties don’t play a role in the proof of our
main theorem, so we content ourselves with this passing remark.

2.2. Attaching λ-adic Galois representations to algebraic Hecke characters over
Q. Let χ be an algebraic Hecke character over Q, so it is of the form

χ = χDir ·Nr, (2.7)

where χDir is a Dirichlet character of conductor N, where N is the norm character,
and r ∈ Z. Let L = Lχ be the number field generated by the values of χ.

The following result is the main route through which we pass from objects on
the “modular” (a.k.a. “automorphic”) side to those on the “Galois” side. In our
main argument towards the proof of Theorem 1.3, we are primarily interested in
the completions of L at primes dividing our fixed choice of residue characteristic
p, but the construction is insensitive to the primes in question, so we state it in this
more general form.

Proposition 2.8. Let χ be an algebraic Hecke character over Q. Given a prime ideal
λ of the ring of integers OL of L = Lχ, there exists a one-dimensional λ-adic Galois
representation

ρχ,λ : GQ = Gal(Q/Q)→ GL1(OL,λ)

where OL,λ denotes the completion of OL at λ, with the following property: for all but
finitely many rational primes q, we have

ρχ,λ(Frobq) = χDir(q)N(q)r,

where Frobq denotes a Frobenius element for q, and where we write χ = χDir · Nr by
(2.7).

Proof. Case 1 (Finite order). Suppose that χ = χDir is a Dirichlet character of con-
ductor N. Then we have a series of maps

GQ � (Z/NZ)× χ→ O×L ↪→ L× ↪→ L×λ

and so define ρχ,λ : GQ → GL1(OL,λ) to be the composition of all of these maps.
Note that for almost all primes q—namely, those that do not divide N—we have

ρχ,λ(Frobq) = χ(q).

Case 2 (Norm). Suppose that χ = N = | · | the norm map, which has L = Lχ = Q.
Pick a prime ` of OL = Z. Since the norm character is of infinite order, it does
not correspond to any Dirichlet character. Instead, we associate with N the `-adic
cyclotomic character

χ` : GQ → Z×` , (2.9)
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which is defined by mapping σ ∈ GQ to the inverse system

(aσ(n))n≥1 ∈ lim←−
n

(Z/`nZ)× ∼= Z×`

where aσ(n) is defined as the element satisfying

σ(ζ`n) = ζ
aσ(n)
`n

for ζ`n a compatible choice of primitive `n-th root of unity for all n. It has the
property that χ`(Frobq) = q = N(q) for any prime q 6= `. So ρN,` = χ`.

General case. We have χ = χDir · (N)r and consider the Galois representation
ρχ : GQ → GL1(OL,λ) defined by ρχ = ρχDir

(ρN)r. Then for almost all primes q,
we have ρχ,λ(Frobq) = χDir(q)N(q)r. �

Given a Galois representation ρ : GQ → GL1(OL,λ), its kernel Ker(ρ) is an open
subgroup of GQ and it is natural to study the ramification of primes in the corre-

sponding fixed field Q
Ker(ρ)

, which is a number field. A Galois representation ρ is
said to be ramified at a prime q if its inertia subgroup Iq at q acts nontrivially. Note

that a prime q ramifies in Q
Ker(ρ)

if and only if ρ is ramified at q.

By the construction given in the proof of Proposition 2.8, we immediately ob-
tain the following result, which we will refer to later.

Corollary 2.10. If q is a prime at which ρχ,λ is ramified, then q | `N, where N is the
conductor of the Dirichlet character χDir and ` is the rational prime under λ (i.e. λ | `).

3. MODULAR ONE-DIMENSIONAL REPRESENTATIONS OF GQ AND CONGRUENCES

If ρ : GQ = Gal(Q/Q)→ GL1(OL,λ) is a Galois representation such that ρ ∼= ρχ

for some algebraic Hecke character χ (as in Proposition 2.8), we say that ρ is mod-
ular (or automorphic). Modular one-dimensional Galois representations are dis-
tinguished from general one-dimensional Galois representations by certain special
properties, such as strong conditions on the values of ρ under Frobenius (Propo-
sition 2.8, which can be interpreted as a purity property) and the restrictions on
ramification (Proposition 2.10). Indeed, these two conditions also turn out to be
essentially sufficient for modularity, as the Fontaine–Mazur conjecture holds for
GL1 over general number fields (see e.g. [Far06, §8]), but our argument does not
require this fact. Alternatively, there is a characterization of algebraic Hecke char-
acters in terms of Galois-theoretic data due to Taniyama [Tan57, §1.2].

Since we are pursuing a deformation-theoretic approach to deduce modular-
ity, we are most interested in how the property of modularity behaves under con-
gruences, and so we prove two results in this vein: a level-lowering result and
our main technical result, which says that modularity for one-dimensional Galois
representations is preserved under congruences.
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3.1. Level-lowering for modular one-dimensional Galois representations. The
level of a modular one-dimensional Galois representation ρχ is the conductor of
the corresponding (primitive) Hecke character χ. While level-lowering results are
usually stated in terms of Galois representations, in the one-dimensional setting,
there is little distinction between an algebraic Hecke character and its associated
Galois representation, in contrast to the case of modular forms. Thus, we phrase
the main lemma (Lem. 3.5) in terms of the conductors of the algebraic Hecke
characters as it leads to more direct arguments.

Before we state the result and give its proof, however, we give an example of
the kind of behavior under congruences that we are trying to characterize.

Example 3.1. Let ` be an odd prime and consider the Dirichlet character

χ := χc,` : (Z/`Z)× → C×

defined by mapping a generator of (Z/`Z)× to the primitive `-th root of unity
e2πi/` = ζ`. Despite χ being a Dirichlet character, observe that, conceptually, this
is also a choice for the first stage of the construction of the `-adic cyclotomic char-
acter (2.9), albeit with values in C× = GL1(C). We can view the λ-adic Galois
representation associated with χ as taking values in the invertible elements of a
completion of the ring of integers Z[ζ`] of the `th cyclotomic extension Q(ζ`) of Q,
that is,

ρχ : GQ → GL1(Z[e2πi/`]λ), (3.2)

reminding ourselves that ρχ factors through (Z/`Z)×. We want to exhibit a con-
gruence between ρχ at a prime λ | ` and the `-adic cyclotomic character χ` = ρN :

GQ → GL1(Z`) (2.9).

The prime ` is totally ramified in Q(ζ`), so ` = (λ)`−1 in Z[ζ`] and thus Z[ζ`]λ ∼=

Z`. Recall that there exists the Teichmüller lift (a.k.a. Teichmüller character) at `:

ω : (Z/`Z)× ↪→ Z×` (3.3)

where the value ω(x) is defined to be the unique solution of ω(x)` = ω(x) that
is congruent to x modulo `; it is the unique multiplicative section of the surjection
r` : Z×` → (Z/`)× given by reduction modulo `. This splitting of the reduction
map allows us to identify (Z/`Z)× ∼= F×` with the (` − 1)th roots of unity of Z×` .
Therefore, the mod ` reductions ρχ = r` ◦ ρχ and ρN = r` ◦ ρN are the same
canonical map Z×` → (Z/`Z)× once the latter is identified with the (` − 1)th roots
of unity, so ρχ and ρN are congruent modulo `.

The level of ρχ isN(χ) = `, as χ is a primitive Dirichlet character, but its mod `
residual representation ρχ is not ramified at `, and so happens to be congruent to
the Galois representation ρN of level N(N) = 1 (Example 3.1) modulo `. �

Remark 3.4. The same argument works for ` = 2 with the Dirichlet character χc,2 :
(Z/4Z)× → C×, as the Teichmuüller lift at 2 is given by ω : (Z/4Z)× ↪→ Z×2 ∼=

{±1}× (1+ 4Z2).
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We want to codify this kind of phenomenon into a general level-lowering re-
sult. The basic idea is that if a prime dividing the level of a modular Galois repre-
sentation ρχ becomes unramified upon passing to the residual representation ρχ,
this should be witnessed by a congruence between ρχ and another modular Galois
representation ρχ ′ where the prime does not divide the conductor N(χ ′) of χ ′.

Lemma 3.5. Let χ be an algebraic Hecke character over Q of conductor N and weight k
with values in L = Lχ. Given a prime λ | ` of OL such that its corresponding residual
representation

ρχ : GQ → GL1(OL,λ/λOL,λ)

is unramified at a prime q | N, there exists an algebraic Hecke character χ ′ of conductor
N ′ and weight k ′ = k such that q - N ′ and ρχ ′ ∼= ρχ.

Moreover, if ρχ is unramified at q = `, where ` is the characteristic of the field
(OL,λ/λOL,λ), we can take χ ′ to be a Dirichlet character (i.e. weight 0) of conductor
M where q -M.

Proof. We prove our result by constructing such a χ ′ in the two contrasting cases
for a prime q | N: when q 6= ` and when q = `.

Case 1 (Away from `). Suppose that q 6= `. The norm character N does not have
ramification at q and the cyclotomic character ρN ∼= χ` is not ramified at q. Thus,
the residual representation ρχDir

obtained by taking the mod λ reduction must be
unramified at q, by our hypotheses. We have a decomposition

Gal(Q(µN)/Q) ∼= (Z/NZ)× ∼= (Z/qrZ)× × (Z/N ′Z)×

for some r,N ′ ∈ N with gcd(q,N ′) = 1. As ρχDir is unramified at q, we must have

η := χDir|(Z/qrZ)× ≡ 1 (mod λ), (3.6)

that is, η is an OL,λ-valued Dirichlet character of conductor dividing qr whose
reduction modulo λ is trivial.

Consider the algebraic Hecke character

χ ′ = χη−1.

We have ρχ = ρχ ′ by (3.6) and χ ′ is of conductorN/qr. As Dirichlet characters are
of weight 0 (Example 2.5), we see that the weight of χ ′ is k ′ = k.

Case 2 (At `). Suppose that q = `. We prove this in two steps.

Case 2(a) (Congruent to trivial). The simple sub-case is when we can proceed as
in Example 3.1. Let ` be an odd prime. Consider χ = Nχ−1c,` where χc,` : (Z/`Z)× →
C× is as in (3.2). We have the injection (Z/`Z)× ↪→ Z×` given by the Teichmüller
lift. The conductor of χ is `, but ρχ is unramified at `, so it follows that

ρχ ∼= ρχ ′ (mod λ)

where χ ′ is the trivial character, which has conductor 1 and weight 0.
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When ` = 2, we proceed in the same way, but as the Teichmüller lift is given
by ω : (Z/4Z)× ↪→ Z×2 instead of from Z/`Z, the conductor of χ is 4 and not 2.
However, the conclusion remains unchanged.

Case 2(b) (General case at `). We have ρχ : GQ → GL1(OL,λ) such that ρχ :

GQ → GL1(OL,λ/λ) is unramified at `. By construction (Proposition 2.8), we have
ρχ = ρχDir · ρrN and so ρχ admits a factorization:

GQ
ρχ //

''

GL1(OL,λ)

Gal(Q(ζN, ζ`∞)/Q)

66

through the Galois group of the compositum of the cyclotomic fields Q(ζN) and
Q(ζ`∞). By reducing modulo λ, we get

ρχ : GQ → GL1(F),

where F ∼= OL,λ/λOL,λ is a field of characteristic `, and so GL1(F) = F× has order
prime to `.

In the mod λ reduction, the `-part is killed by an `-group, and since ρχ is un-
ramified at ` and the `-adic cyclotomic character χ` ∼= ρN is ramified at `, we must
have

χ
∣∣
(Z/`v`(N)Z)× ≡ χ

−r
` (mod λ),

where `v`(N) is the highest power of ` to divide N = N(χ) (i.e. v`(N) is the `-adic
valuation of N). Consider the algebraic Hecke character

χ ′ = χDir(χDir

∣∣
(Z/(`v`(N)Z))×)

−1

of conductor N ′ = N/`v`(N), noting that ρχ ′ is unramified at `. We calculate that
the mod λ residual representations coincide:

ρχ ′ ∼= ρχDir
· ρ
χDir

∣∣
(Z/(`v`(N)Z))×

−1 ∼= (ρχDir
· ρrN) ∼= ρχ.

We conclude that χ ′ can be taken to be a Dirichlet character of level N/`v`(N) and
thus of weight 0. �

Remark 3.7. In effect, repeated applications of Lemma 3.5 allows us to remove
primes from the level via congruences. But how far can this result take us? De-
termining the minimal level of a general modular Galois representation—that is,
the smallest level among all the Galois representations in the equivalence class of
ρ under the relation of congruences modulo all possible primes—is connected to
a number of rich arithmetic phenomena and exhibits a number of subtleties that
make it difficult to calculate explicitly. For example, a naive approach would re-
quire looking at congruences modulo all possible primes! But in the GL1 case,
there is an interpretation that is highlighted our proof of the Kronecker–Weber
theorem (§6.1). In this context, determining the minimal level of a ρχ is equivalent
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to determining the smallestN such that the associated finite abelian extension of Q
is contained in the cyclotomic field Q(ζN).

3.2. Modularity for one-dimensional Galois representations is contagious. Let
ρ0 : GQ → GL1(OL,λ) be a modular Galois representation, so ρ0 ∼= ρχ0 for an
algebraic Hecke character χ0 of some conductorN0. Write ρ0 : GQ → GL1(OL,λ/λ)
for its corresponding residual representation.

We want to prove the following result, which can be viewed as a modularity
lifting theorem for one-dimensional Galois representations.

Theorem 3.8. Let ρ : GQ → GL1(OL,λ) be an arbitrary Galois representation such that
its residual representation ρ ∼= ρ0. Then ρ is modular, that is, there exists an algebraic
Hecke character χ such that ρ ∼= ρχ.

To prove this result, we develop the deformation theory of one-dimensional Galois
representations that are modular, taking care to remember the weight and conduc-
tor of the corresponding algebraic Hecke characters.

4. THE DEFORMATION THEORY OF MODULAR GALOIS CHARACTERS

The deformation theory of one-dimensional Galois representations when no
conditions are imposed on the deformations is simple: since any one-dimensional
residual representation ρ of GQ,S is projectively equivalent to another, the corre-
sponding universal deformation ring only depends on the residue field k (and not
a specific ρ), and it is not hard to show—as the existence of the Teichmüller lift
(3.3) essentially reduces the argument to the trivial case—that this deformation
ring is isomorphic toW(k)[[Gab,p

Q,S ]], the completed group ring of the abelianized p-
completion ofGQ,S with coefficients in the ring of Witt vectorsW(k) [Maz89, §1.4].
Thus, the difficulty is not in finding deformations—as they exist in abundance—
but rather being able to select for ones that are modular, which necessitates the
more delicate developments of this section.

For the proof of Theorem 1.2, the main arithmetic objects to understand are
the primes at which a modular Galois representation ρχ is ramified. Ultimately, this is

because we need to show that the number field Q
Ker(ρχ) cut out by ρχ is contained

in some cyclotomic field, and cyclotomic fields have tightly controlled ramification
behavior. As it is only the finite-order Dirichlet part χDir of an algebraic Hecke
character χ that contributes to the ramification of ρχ, we can restrict ourselves to the
case of Galois representations attached to Dirichlet characters.

4.1. The deformation problem. Let k be a finite field. Given a residual represen-
tation

ρ : GQ → GL1(k)

12



that is assumed to arise as the reduction of a Galois representation ρχ associated
with some Dirichlet character χ, we want to study its deformations, that is, the Ga-
lois representations ρ : GQ → GL1(O) whose mod mO reductions are isomorphic
to ρ. More precisely, we want to study the structure of a particular subset of these
deformations, obtained by imposing conditions (Def. 4.3) that correspond to our
specific arithmetic problem. These conditions will turn out to characterize the de-
formations associated with Dirichlet characters.

We begin by collecting some facts about Dirichlet characters, their reductions,
and the behavior of conductors under congruences. Throughout this section, we
write O for a complete noetherian local ring with maximal ideal mO and finite
residue field O/mO = k of characteristic p > 0. If such an O is coming from a
modular Galois representation (Prop. 2.8), it is necessarily the ring of integers of a
finite extension of Qp.

Remark 4.1. Note that we are using p to denote the characteristic of the residue
field k. The prime p will be thought of as being fixed throughout this section, as
opposed to the varying `’s (and λ’s) that we used for residue characteristics in
previous sections. We hope that this distinction in notation clarifies more than it
confuses.

Recall that a Dirichlet character χ is of conductor N = N(χ) if χ : (Z/NZ)× →
GL1(O) is not a character of (Z/N ′Z)× for any N ′ | N with N ′ 6= N. Given an
O-valued Dirichlet character χ, we can also consider its mod mO reduction

χ : (Z/N(χ)Z)× → GL1(O/mO)

and its corresponding conductor N(χ). As the associated Galois representation
ρχ and similarly its reduction ρχ are just obtained by precomposition with the
natural quotient map GQ → (Z/N(χ)Z)× (Prop. 2.8), in this section we can again
work with the Dirichlet characters and their reductions directly.

A key phenomenon that occurs in this setting is that there can exist two O-
valued Dirichlet characters that have different conductors, but whose mod mO

reductions are the same. We have already seen this kind of behavior for modular
Galois representations in our level-lowering result (Lemma 3.5). The next result
shows how we can refine this if we only allow for congruences between Galois
representations coming only from Dirichlet characters instead of algebraic Hecke
characters in general. Namely, for almost all primes `, mod mO congruences can
possibly contribute ` to the conductor, but not higher powers of `.

Lemma 4.2. Let χ be anO-valued Dirichlet character. If ` 6= p = char(O/mO) is a prime
such that ` - N(χ) but ` | N(χ), then ` || N(χ), that is, ` - (N(χ)/`).

13



Proof. Recall that M | N corresponds to the existence of a nontrivial homomor-
phism (Z/NZ)× → (Z/MZ)×. We have the decomposition

(Z/N(χ)Z)× =
∏
q

(Z/qmq Z)×

as q runs over the primes, with mq a non-negative integer. Let ` be a prime that
corresponds to a nontrivial factor in this decomposition, that is, m` > 0. The mod
mO reduction χ of χ : (Z/N(χ)Z)× → GL1(O) factors through (Z/N(χ)Z):

(Z/N(χ)Z)× ∼= (Z/`m`Z)× ×
∏
q 6=`(Z/q

mqZ)×
χ //

++

GL1(O/mO)

(Z/N(χ)Z)×

77

which implies that χ|(Z/`m`Z)× ≡ 1 (mod mO) as ` does not occur in N(χ) by as-
sumption. Thus, this restriction χ|(Z/`m`Z)× : (Z/`m`Z)× → GL1(O) must have
order a power of the characteristic of O/mO, that is,

|(Z/`miZ)×| = φ(`m`) = (`− 1)`m`−1

is a power of p. Hence,m` = 1, because otherwise, χwould be trivial on the `-part
of the decomposition and so the conductor N(χ) should have been smaller. �

For Dirichlet characters χ, we want to classify deformations of ρχ : GQ →
GL1(O/mO) associated with a choice of datum

D = (Σ, pr)

where Σ is a finite set of primes and pr is a given power of p.

Definition 4.3. Let A be a complete noetherian local O-algebra with residue field
k of characteristic p > 0. Let Σ be a finite set of places of Q. We say that a repre-
sentation ρ : GQ → GL1(A) is of type D = (Σ, pr) if

(i) ρ is unramified outside of Σ, that is, ρ|Iq ∼= 1 for all primes q 6∈ Σ, where
Iq denotes the inertia subgroup at q; and

(ii) ρ|Dp factors through Gal(Qp(µpr)/Qp), where Dp denotes the decompo-
sition subgroup at p.

Given a residual representation ρ : GQ → GL1(k), we write DefD(ρ,A) for the set
of deformations GQ → GL1(A) of ρ of type D.

Restricting the residual representation that we consider to those coming from
reductions of Dirichlet characters and the deformations to those of typeD together
impose strong conditions on our deformation problem.

14



Lemma 4.4. Let χ be an O-valued Dirichlet character. A Dirichlet character χ ′ of con-
ductor N(χ ′) that satisfies χ ′ ≡ χ mod mO is of type D = (Σ, pr) if and only if

N(χ ′) | prN(p)(χ)
∏

q∈Σ\{p}

q-N(p)(χ)

q, (4.5)

where N(p)(χ) denotes the prime-to-p part of the conductor of χ andmq ∈ N.

In other words, deformations of type D = (Σ, pr) are quite restricted in what
primes they can add to the level: namely, they can only add at most pr (no higher
powers of p are possible) or primes that are in Σ but not in already in the conductor
of the original ρχ.

Proof. If the divisibility condition (4.5) is satisfied, it is immediate that χ ′ is of type
D, so it remains to prove the “only if” direction. Suppose that χ ′ is a Dirichlet
character of type D such that χ ′ ≡ χ mod mO. If q 6= p and q - N(χ), then q
divides N(χ ′) at most once by Lemma 4.2. Since χ ′ is of type D, if q 6∈ Σ, then q
does not divide N(χ ′).

For the residue characteristic p, we have

χ ′ : Gal(Q(µN(χ ′))/Q) ∼= (Z/N(χ ′)Z)× → GL1(O)

and write (Z/pmZ)× for the largest such m that χ ′ factors through. By restricting
to the decomposition groupDp, we see that χ ′ factors through Gal(Qp(µpm)/Qp)
only ifm ≤ r as χ ′ is of type D.

Finally, suppose that q | N(p)(χ). As the reduction χ ′ factors through χ, so
does its restriction to the respective (Z/qmZ)× factors. If there were a nontrivial
kernel to this induced map, then χ ′ must be trivial on some part of the (Z/qmZ)×

factor of N(χ ′), which is a contradiction. �

4.2. Existence of the deformation ring. In this subsection, we establish the exis-
tence of the universal deformation ring parameterizing the deformations of type
D (Def. 4.3). There are a number of ways to prove this result—via Schlessinger’s
criteria, via pseudocharacters, etc.—we give a sort of “generators and relations”
argument that adapts one given by Faltings for n-dimensional Galois representa-
tions (cf. [DDT94, Thm. 2.3], see also [dSL97] for a different explicit approach), as
we find it to be the simplest to build up from first principles.

For the method of proof to work, we need to first establish a couple of finite-
ness results. We begin by proving the following simple group-theoretic fact. Recall
that a (topological) groupG is said to be topologically finitely generated if there exists
a finite set of elements that generate a dense subgroup of G.

Lemma 4.6. Let G be an abelian profinite group that is pro-p and topologically finitely
generated. If the images of g1, . . . , gn ∈ G generate G/pG, then g1, . . . , gn topologically
generate G.
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Proof. A pro-p group that is topologically finitely generated is known to be strongly
complete, that is, it is equal to its profinite completion (see, e.g. [Ser02, I.§4.2, Prop.
25]). In other words, G ∼= lim←−UG/U where the limit is taken over the (normal)
subgroups of finite index. Thus, to show that some set S ⊂ G is dense, it suffices
to check that the image of S→ G/U is dense for each subgroups U of finite index.

Let U be a subgroup of pG of finite index (and so a subgroup of G of finite
index). It suffices to show that G/U is (topologically) generated by the images of
g1, . . . , gn. Since G is an abelian pro-p group, the quotient map G/U → G/pG is
of the form

G/U ∼= Z/pm1Z× Z/pm2Z× · · · × Z/pmsZ→ (Z/pZ)s ∼= G/pG.

As g1, . . . , gn generate G/pG, it follows that the numbers of factors s is bounded
by n: namely, s ≤ n as |G/pG| ≤ pn. Hence, g1, . . . , gn generate G/U, yielding
our result. �

Using this, we can show that representations that satisfy condition (i) of Defi-
nition 4.3 all factor through a quotient that is topologically of finite type.

Proposition 4.7. Let ρ0 : GQ → GL1(k) be a representation that is unramified outside
of a finite set Σ of primes. There exists an abelian quotient H of GQ that is

(i) topologically finitely generated, and
(ii) has the following property: for any complete noetherian local O-algebra A, if

ρ : GQ → GL1(A) is a deformation of ρ that is also unramified outside of Σ,
then we have a factorization

GQ

    

ρ // GL1(A)

H

;;

Proof. We first note that both ρ0 and the deformation ρ factors through the abelian-
ization GabQ of GQ, and further, through GabΣ , the Galois group of the maximal
abelian extension of Q that is unramified outside of Σ. Writing ρ0 and ρ for the
maps from GabΣ induced by ρ0 and ρ, we have the commutative diagram

GL1(A)

��
GabΣ

ρ
;;

ρ // GL1(k)

Consider the subgroup G0 = Ker(ρ) of GabΣ ; it is of finite index due to the follow-
ing standard “no small subgroups” argument that is ubiquitous in the theory of
Galois representation. LetU be an open subset ofGL1(k) that contains the identity,
but is small enough so that it contains no nontrivial subgroup. The inverse image
ρ−1(U) is an open subset containing the identity and so itself contains an open
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subgroup U ′ of GabΣ as GabΣ is profinite. The image ρ(U ′) is a subgroup of GL1(k)
inside ofU and so is trivial, hence the kernelG0 of ρ contains an open subgroupU ′

and open subgroups of compact groups (like profinite groups) have finite index.

Now, under ρwe have ρ(G0) ⊂ 1+mA. We have the natural filtration

1+mA ⊃ 1+m2A ⊃ · · · ⊃ 1+mmA ⊃ · · ·

where the successive quotients are p-groups. Thus, the restriction ρ|G0 factors
through an abelian pro-p group H.

To finish the proof and establish (i), we want to show that G0 is topologically
finitely generated. By Lemma 4.6, it is enough to find the generators of G0/pG0.
Consider the number field K = Q

G0 and let K1, K2, . . . denote the degree p (nec-
essarily abelian) extensions of K that are unramified outside of Σ. Such extensions
are of bounded degree and are unramified outside of Σ, and as a consequence of
the Hermite–Minkowski theorem (see, e.g. [Neu99, Thm. III.2.13]), we know there
are only finitely many such extensions. �

With these algebraic results in hand, it is easy to establish the existence of the
deformation ring for deformations of type D.

Theorem 4.8. There exists a complete noetherian local O-algebra RD and a deformation
ρD : GQ → GL1(RD) such that if ρ : GQ → GL1(A) is a deformation of type D of
χ : GQ → GL1(k), there exists a homomorphism φA : RD → A such that the diagram

GL1(RD)

φA

%%
GL1(A)

��
GQ

ρD

>>

ρ

33

χ // GL1(k)

commutes.

Proof. As a deformation of type D = (Σ, pr) is necessarily unramified outside of
Σ, we know that it factors through a profinite, topologically finitely generated,
abelian group G by Proposition 4.7. Fix a set g1, . . . , gr of topological generators
for G. Pick liftings M1, . . . ,Mr to GL1(O) = O× of ρ(g1), . . . , ρ(gr). Consider the
ideals J ⊂ O[[T1, . . . , Tr]] with the property that there exists a representation

G→ GL1(O[[T1, . . . , Tr]]/J)

of type D that sends gi to Mi + Ti, and let I denote the intersection of all such
ideals. We claim that the R = O[[T1, . . . , Tr]]/I—which is necessarily a complete
noetherian local ring by the Cohen structure theorem—has the required property
and so is the ring RD that we desire.
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It remains to check the universal property. We have a map ρuniv : G→ GL1(R)

given by ρuniv(gi) = Mi + Ti (mod I). Note that this is a group homomorphism
as it is obtained as the quotient of the intersection of ideals J that have this prop-
erty and that ρuniv ∼= ρ0 as Ti lies in the maximal ideal of O[[T1, . . . , Tr]]. Given a
deformation ρ : GQ → GL1(A) of ρ of type D, we define a map φA : R → A as
follows: consider the map φ̃A : O[[T1, . . . , Tr]]→ A defined by

φ̃A(Ti) = ρ(gi) −Mi (4.9)

and writing J = Ker(φ̃A), takeφA to be the composition R→ O[[T1, . . . , Tr]]/J→ A.
We thus have a homomorphism G→ GL1(O[[T1, . . . , Tr]]/J) given by

gi 7→Mi + Ti (‘‘ = ρ(gi)") (4.10)

for i = 1, . . . ,m, which yields our desired factoring through GL1(R). �

4.3. The Hecke algebra for GL1. The more concrete side of an “R = T” theorem
(a.k.a. modularity theorem) tends to be the “T” side, which is an algebra generated
by a set of Hecke operators—for modular forms, these are usually thought of as
certain endomorphisms of the Jacobian J0(N) of the modular curve X0(N) of a
given level N—and is called a Hecke algebra. Here, we describe its analogue in the
case of GL1(Q).

Fix an integer N ≥ 1 and a complete noetherian local ring O. Write GN =

(Z/NZ)× ' Gal(Q(µN)/Q). Consider the group ring

V = O[GN]

which we can view as the O-module consisting of functions GN → O. The O-
algebra is free of rank |GN| = ϕ(N), where ϕ is the Euler totient function, with a
natural basis given by the characteristic functions [n] := 1n : GN → O for n ∈ GN.

For any integer m ≥ 1, we have the mth Hecke operator Tm ∈ End(V), which is
defined on functions f ∈ V via

(Tmf)(g) = f(mg)

for any g ∈ GN. The Hecke algebra of level N is the subalgebra

TN ⊂ End(V)

generated overO by all Hecke operators Tm for integersm ≥ 1 such that gcd(m,N) =

1. As an O-algebra, this turns out to be nothing other than V = O[GN].

Proposition 4.11. There is an O-algebra isomorphism φ : TN
∼→ O[(Z/NZ)×] where

φ

(∑
n

anTn

)
=
∑

an[n].

Proof. First, we check thatφ is anO-algebra homomorphism. This follows because
for all positive integersm and n, we have

(TmTnf)(g) = (Tmf)(ng) = f(mng) = (Tmnf)(g)
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for all f ∈ V and g ∈ G ∈ GN, and this is compatible with the corresponding
multiplication [m][n] = [mn] in the group algebra O[(Z/NZ)×].

Surjectivity is immediate, so it only remains to show injectivity. To calculate
the kernel ofφ, we can assume without loss of generality thatO contains theϕ(N)-
th roots of unity by embedding O[GN] into O(µϕ(N))[GN], where O(µϕ(N)) de-
notesO with theseϕ(N)-th roots of unity adjoined. Given a character χ ∈ V—that
is, a homomorphism χ : GN → O and not just a function—we have

(Tmχ)(g) = χ(mg) = χ(m)χ(g).

Recall that as G is finite and abelian, so characters form a basis for V = O[GN].
Now, suppose that ∑

n≥1
(n,N)=1

anTn = 0.

Then for any character χ ∈ V , we have∑
n≥1

(n,N)=1

anχ(n) = 0.

Thus, the character of GN defined by n 7→ an is orthogonal to all characters χ ∈ V
and so must be 0. Hence, Kerφ = 0 and so φ is injective. �

4.4. Ingredients from commutative algebra: two invariants and the Wiles–Lenstra
isomorphism criterion. In [Wil95, Appx.], two commutative algebra invariants
associated with a prime ideal p of certain local O-algebras T are singled out: the
O-module p/p2 and the annihilator ideal ηT = AnnO p ⊂ O. Wiles had noticed that
p/p2 could be used to test for isomorphisms between complete intersections, and
ηT was used by Kunz to test for isomorphisms between Gorenstein rings [Kun74].
An equality of these invariants turns out to be a criterion for a Gorenstein ring to
be a complete intersection (Lem. 4.30). In this section we’ll describe these invari-
ants and how they are applied, culminating in the isomorphism criterion that we
wish to apply.

For us, O is the ring of integers of a finite extension of Qp. Suppose that we
have the following commutative diagram of surjective homomorphisms of com-
plete Noetherian local O-algebras:

R
φ // //

πR �� ��

T

πT����
O

(4.12)

where we assume that T is a finite flatO-algebra (i.e. finitely generated and free as
a O-module). We set

IR = KerπR and IT = KerπT .
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The first invariant of interest is the O-module IR/I2R, denoted by

ΦR = IR/I
2
R (4.13)

(not be confused with with the surjectionφ : R→ T that we are trying to show is an
isomorphism). It can be thought of as the “tangent space for R.” (More precisely, it
is the cotangent space of the affine scheme Spec(R) at IR, though we do not require
the use of this perspective nor any related algebro-geometric language in our main
argument.)

The other invariant of interest is the congruence ideal ηT of T , defined to be the
ideal

ηT = πT AnnT (IT ) (4.14)

in O. It essentially measures the “highest power congruence” that can be used to
define the ring T .

We give a couple of examples (with R = T for simplicity) to illustrate these
invariants and perhaps justify their names.

Example 4.15. Let$ denote a choice of uniformizer for O. Consider

T = {(a, b) ∈ O ×O, a ≡ b (mod $n)} ∼= O[[X]]/(X(X−$n))

where π(a, b) = a denotes the projection map onto the first factor, then ΦT =

O/$nO and ηT = ($n). �

Example 4.16. Suppose that we have a ring of the form

T = O[[X]]/(f(X))

where the defining power series is such that f(0) = 0, and write

f(X) = a1X+ a2X
2 + · · · ∈ O[[X]].

We have the constant term map π : T → O defined by

π(g) = g(0) (4.17)

for any g ∈ T . Then

IT = Ker(π) = (X) = XT

and so Ann(IT ) = Ann(X) =
(
f(X)
X

)
. Therefore

ηT = π(Ann(IT )) = π (f(X)/X) = (a1).

On the other hand, the surjective map IT → O/(a1) given by g 7→ dg
dX

(0) has kernel
(X2) = I2T and so

ΦT = IT/I
2
T
∼= O/(a1) = O/ηT . �
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Example 4.18. Consider T = O[[X1, . . . , Xn]] with the constant term map π : T → O
again. Then IT = (X1, . . . , Xn) and I2T = (XiXi | 1 ≤ i, j ≤ n), so

ΦT = IT/I
2
T
∼= On

g 7→ (
∂g

∂x1
(0), . . . ,

∂g

∂xn
(0)

)
.

As T is an integral domain, we have Ann IT = 0 and so ηT = (0). �

Example 4.19. More generally, suppose that we have a ring of the form

T = O[[X1, . . . , Xn]]/(f1, . . . , fn).

Such a ring T , which admits as many relations as there are generators, is called a
complete intersection. Let π : T → O be the constant term map (4.17), and note that
IT = Ker(π) = (X1, . . . , Xn). We have a natural map

d : IT → On/{( ∂fi
∂X1

(0), . . . ,
∂fi

Xn
(0)

)
: i = 1, . . . , n

}
g 7→ (

∂g

∂X1
(0), . . . ,

∂g

∂Xn
(0)

)
whose kernel is I2T , so

ΦT = IT/I
2
T
∼= On/

{(
∂fi

∂X1
(0), . . . ,

∂fi

Xn
(0)

)
: i = 1, . . . , n

}
. �

It is more difficult to give a closed form expression for the congruence ideal ηT
in the complete intersection case without getting into the intricacies and explicit
expressions for the fi’s, but it is usually not too difficult to calculate in examples.
We give a simple example of how this can be done.

Example 4.20. Consider T = Z`[[X, Y]]/(X(X − `), Y(Y − `)) with π : T → O the
constant term map, so IT = (X, Y)T . By Example 4.19, we have

ΦT = IT/I
2
T = (Z` ⊕ Z`) /((−`, 0), (0,−`)) ∼= Z/`Z⊕ Z/`Z.

To calculate the congruence ideal, we note that (X − `)(Y − `) ∈ Ann IT and so
(`2) ⊂ ηT . We want to show that this is in fact an equality.

Suppose that g = a+ bX+ cY + dXY ∈ Ann IT . Since

Xg = aX+ bX2 + cXY + dX2Y = aX+ b`X+ cXY + d`XY = 0,

we must have a+ b` = 0 and c+ d` = 0. Similarly,

Yg = aY + bXY + cY2 + dXY2 = aY + bXY + c`Y + d`XY = 0

and so a+ c` = 0 and b+ c` = 0. Thus,

a = −`c = −`(−d`) = `2d

and so ηT ⊂ (`2). Hence, ηT = (`2). �

21



In the last example, we had |ΦT | = |ηT |. We’ll give an example of what hap-
pens when we add a relation to the quotient ideal and are no longer a complete
intersection.

Example 4.21. Let T = Z`[[X, Y]]/(X(X − `), Y(Y − `), XY) with π the constant term
map again, so IT = (X, Y)T and

ΦT = Z/`Z⊕ Z/`Z

as in Example 4.20. To calculate the congruence ideal ηT , we note that here we
have

X− Y − ` ∈ Ann IT

and so (`) ⊂ ηT . We claim that ηT = (`).

Suppose that g = a+ bX+ cY ∈ Ann IT , and so

Xg = aX+ bX2 + cXY = aX+ b`X,

which means that a = −b` and thus ηT ⊂ (`) giving us ηT = (`). �

Thus, we see that we have an explicit pair of invariants associated with a ring,
which (a) can be calculated with some thought, and (b) seem to be inverse to each
other in some sense, at least for well-behaved rings like the examples above. We
now want to focus on more general properties and applications. However, this
is the only ingredient in the proof of our main theorem that is not simplified by
restricting to our one-dimensional or abelian setting. Thus, we content ourselves
to giving a sense for how the invariants are calculated and used and referring to
other resources for full proofs (e.g. [DDT94, §5]).

The criterion that we ultimately wish to apply (Thm. 4.30) requires calculating
lengths of O-modules. Recall that an O-module M has length `(M) = n if there
exists a chain of submodules

M0 (M1 ( · · · (Mn =M

and there is no other longer chain of submodules. To this end, it is natural to try
and find a way to study obstructions to generating a module by a certain number
of elements. This is precisely what is measured by Fitting ideals. Given a finitely
generated moduleM and a choice of short exact sequence

0→M ′ → On →M→ 0,

the Fitting ideal Fitt(M) = FittO(M) of M is the ideal of O generated by the de-
terminants of det(v1, . . . , vn) as vi ∈ On ranges over all choices of elements of
M ′ ⊂ O. Note that Fitt(M) ⊂ AnnO(M). It is independent of the choice of exact
sequence and so is an invariant ofM.
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Example 4.22. If M is a finitely generated O-module—recall that O is a discrete
valuation ring with maximal ideal m = mO in our setting—then M admits a pre-
sentation

M ∼= Or ⊕O/mn1 ⊕O/mn2 ⊕ · · · ⊕ O/mnm .

Here, the Fitting ideal is

Fitt(M) =

mn1+···+nk , if r = 0,

(0), if r > 0.

In particular, ifM is a finite O-module, then #M = #(O/Fitt(M)). �

For us, the most important property of Fitting ideals is their behavior under
tensor products: if M is a finitely generated T -module (with T as in our setup
(4.12))

πT (FittT (M)) = FittO(M⊗T O), (4.23)

where the tensor product is taken with respect to πT : T → O. This allows us to
directly relate theΦ- and η-invariants, as whenM = KerπT , we have

FittO(ΦT ) = πT (FittT (KerπT )) ⊂ πT (AnnT KerπT ) = ηT ,

which tells us that

#ΦT ≥ #(O/ηT ). (4.24)

We recall Wiles’s observation about the Φ-invariant (see, e.g. [DDT94, Thm.
5.21]).

Lemma 4.25. In our setup (4.12), if

(i) T is a (finite, flat) complete intersection, and
(ii) ΦR = IR/I

2
R
∼= IT/I

2
T as O-modules and are of finite length,

then φ is an isomorphism.

Remark 4.26. Both of the hypotheses in Lemma 4.25 are necessary. For the first, we
note that the natural surjection

Z`[[X, Y]]/(X(X− `), Y(Y − `))→ Z`[[X, Y]]/(X(X− `), Y(Y − `), XY)

between the rings of Example 4.20 and Example 4.21 is not an isomorphism despite
having isomorphic Φ-invariants, due to the latter not being a complete intersec-
tion. For the second, the surjective map

R = O[[T ]]/(T3)→ B = O[[T ]]/(T2)

induced by T 7→ T is not an isomorphism despite the fact that IR/I2R ' O '
IB/I

2
B as it is not of finite length due to the existence of the infinite chain of ideals

(miO)
∞
i=1.
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We also recall an effective version of Kunz’s criterion ([DDT94, Thm. 5.24]).
Recall that a finite flatO-algebraA is Gorenstein if HomO(A,O) ∼= A asA-modules,
and if such an A is a complete intersection, then it is Gorenstein.

Lemma 4.27. In our setup (4.12), assume that both R and T are finite and flat (and thus
free) O-algebras. If

(i) R is Gorenstein; and
(ii) 0 6= ηR = ηT ,

then φ is an isomorphism.

In general, we can “resolve” finite, flat O-algebras by complete intersections
(see, e.g. [DDT94, Thm. 5.26]).

Lemma 4.28. If B is a free O-algebra of finite rank that is local, and π : B → O is a
surjection, then there exists a surjection

φ : A→ B

where A is a complete intersection and induces an isomorphism IA/I
2
A

∼= IB/I
2
B of O-

modules.

The above lemmas can be combined to yield to snappy proofs of results that
indicate how these invariants interact.

Proposition 4.29. Let T be a locally free O-algebra of finite rank equipped with a (lo-
cal) surjection π : T → O. If ηT 6= 0, then T is a complete intersection if and only if
FittO(IT/I

2
T ) = ηT .

Proof. By Lemma 4.28, there exists a complete intersection R and a surjection φ :

R→ T that induces an isomorphism IR/I
2
R
∼= IT/I

2
T .

If T is a complete intersection, by Lemma 4.25, φ is an isomorphism, and
Lemma 4.28 applied to R implies that

ηT = ηR = Fitt(IR/I
2
R) = Fitt(IT/I

2
T ).

Conversely, if ηT = Fitt(IT/I
2
T ), then

0 6= ηB = Fitt(IT/I
2
T ) = Fitt(IR/I

2
R) = ηR

and R is Gorenstein, so Lemma 4.27 says that φ is an isomorphism, so T is a com-
plete intersection. �

We can now state and prove the main isomorphism criterion that we want to
apply in the proof of our main theorem.

Theorem 4.30. (Wiles–Lenstra Isomorphism Theorem) [Wil95, Appx., Prop. 2] [Len95]
Let O be a complete discrete valuation ring, R a complete noetherian local O-algebra, and
T a finite flat localO-algebra. Suppose that we have surjectiveO-algebra homomorphisms
π : T → O and φ : R→ T . Then the following conditions are equivalent:
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(i) `(ΦR) ≤ `(O/ηT ) <∞
(ii) `(ΦR) = `(O/ηT ) <∞

(iii) φ is an isomorphism, ηT 6= 0, and T is a complete intersection.

Proof. (iii)⇒ (ii): By Proposition 4.29,

ηT = Fitt(IT/I
2
T ) = m

`(IR/I
2
R)

O .

As ηT 6= 0we have `(O/ηT ) <∞ and `(O/ηT ) = `(IR/I2R) = `(ΦR).

(ii)⇒ (i): is immediate.

(i)⇒ (iii): We have

#(O/ηT ) ≤ #ΦT ≤ #ΦR ≤ #(O/ηT )

by (4.24), the surjectivity of φ, and our hypothesis (i), respectively. Thus ΦT =

#(O/ηT ) and so T is a complete intersection by Proposition 4.29. Since #ΦR =

#ΦT , the map φ induces an isomorphism between the Φ-invariants, so φ is an
isomorphism by Lemma 4.25. �

4.5. A presentation for a localization of the Hecke algebra. The lack of a closed-
form formula for a congruence ideal η is a problem in general arguments, as the
Wiles–Lenstra isomorphism theorem (Lem. 4.30) requires us to compute the length
of the quotientO/η. Luckily for us, for a relevant subclass of complete intersection
rings, such a formula is available.

Let G be a finite abelian group, so

G =

m∏
i=1

Gi, (4.31)

where Gi = 〈gi〉 is a cyclic group of prime power order. We write ni = |Gi| for the
sizes of these factors and n = |G|. LetO be the ring of integers of a finite extension
of Qp, assumed to contain the n-th roots of unity. Given a group homomorphism
χ : G→ GL1(O), we have an induced map of O-algebras πχ : O[G]→ O given by

πχ(gi) = χ(gi)

for all i. We want to study the localization of the group ring O[G] at the maximal
ideal

m = Ker
(
O[G] πχ→ O → O/mO) ,

which we denote by

A = O[G]m.

By realizing A as a universal deformation ring, we can obtain an explicit pre-
sentation of A and compute itsΦ-invariant and η-invariant.

Proposition 4.32.
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(i) The ring A is a free O-algebra of finite rank over O and is complete, noetherian,
and local. There is an isomorphism

A ∼= O[[Ti, . . . , Tm]]/((T1 + χ(gi))
ni − 1 | i = 1, . . . ,m),

so, in particular, A is a complete intersection. Under this identification, π(Ti) =
0 for all i.

(ii) We have

ΦA = IA/I
2
A

∼= O/n1O × · · · × O/nmO.

(iii) We have

ηA ∼= |G|O = nO.

Proof. From our decomposition of G into cyclic factors (4.31), we can write

O[G] ∼= O[x1, . . . , xn]/(xn11 − 1, . . . , unmm − 1)

and by changing variables xi ↔ Ti + χ(gi) where Gi = 〈gi〉, we get

O[G] = O[T1, . . . , Tm]/((T1 + χ(gi))
ni − 1 | i = 1, . . . ,m).

We want to formulate a deformation problem withA as its universal deforma-
tion ring and where our desired isomorphism is realized as that of the universal
deformation. Let χ : G→ GL1(O/mO) denote the mod mO reduction of our group
homomorphism χ. As G is finitely generated, there exists a universal deformation
ring R classifying these deformations (e.g. by following the proof of Theorem 4.7),
so

Def(χ, B) ∼= HomO(R, B)

for complete Noetherian local O-algebras B with residue field B/mB ∼= O/mO.
Moreover, we have A ∼= R by (4.9) and (4.10).

We now want to produce an isomorphism between R and our desired presen-
tation

R̃ = O[[T1, . . . , Tm]]/((Ti + χ(gi))
ni − 1 | i = 1, . . . ,m).

We have the natural map ρuniv : G→ GL1(R̃) defined by

ρuniv(gi) = Ti − χ(gi)

for a generator gi of Gi. Given a deformation ρ : G → GL1(B) of χ, we have the
map ψ : R̃→ B defined by

ψ(Ti) = ρ(gi) − χ(gi)

with the property that ρ(gi) −χ(gi) ∈ mB for all i as ρ is a deformation of χ. Thus,
by post-composing the induced map of ψ with ρuniv, we get ρ. Hence, we obtain
the properties of (i). In particular, as A is a complete intersection, we get (ii) from
Example 4.19 and (iii) from the fact that ηA = FittO(ΦA) (Prop. 4.29). �
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4.6. Proving the “R = T” theorem. Recall that χ := ρ : GQ → GL1(O/mO) is
a representation obtained as the mod mO reduction of a Galois representation ρχ
attached to some Dirichlet character χ as in Proposition 2.8. Let RD denote the uni-
versal deformation representing the deformations of ρ of type D = (Σ, pr) (Thm.
4.8). Let TD denote the Dirichlet deformations χ ′ : GQ → GL1(O) of χ of type D,
which we know must have conductor

N(χ ′) | prN(p)(χ)
∏

q∈Σ\{p}

q-N(χ)

q

by Lemma 4.4 and so TD admits a presentation following Proposition 4.32. We
want to show that the corresponding map

φ : RD → TD

(Thm. 4.8) is an isomorphism, giving us an “R = T” theorem. This map is surjec-
tive, as any Dirichlet character χ ′ lying in TD has its associated O-valued Galois
representation ρχ ′ by Proposition 2.8. Thus, we have two surjective O-algebra
homomorphisms

RD
φ // TD // O

where the latter is the constant term map (4.17) and so can place ourselves in the
setting of §4.4. We want to apply Theorem 4.30 to show that φ is an isomorphism,
and to this end, reduce ourselves to verifying condition (i) of the theorem in our
context.

We begin by recalling a simple algebraic observation, which we later apply to
study ΦD := ΦRD .

Lemma 4.33. If O is a discrete valuation ring and M is a finitely generated O-module,
then

HomO(M,O/mkO) ∼=M/mkOM.

In particular, `(HomO(M,O/mO)) = `(M/mOM) is equal to the number of cyclic fac-
tors ofM. We can also use this to calculate the length of an O-module asymptotically:

lim
k→∞ `(HomO(M,O/mkO)) = `(M)

Proof. We have a decomposition

M ∼= Or ⊕O/mn1O ⊕O/m
n2
O ⊕ · · · ⊕ O/m

nm
O . (4.34)

By the additivity of Hom, it suffices to prove our result whenM is cyclic. IfM = O,
then

HomO(O,O/mkO) ∼= O/mkO ∼=M/mkOM.

If M = O/aiO, we know that M ∼= O/miO for some i as O is a discrete valuation
ring and

HomO(O/miO,O/mkO) ∼= O/(miO +mkO)
∼= O/mmin(i,k)

O

∼= O/mkO ⊗O/miO ∼=M/mkOM.
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The final statement in our lemma holds because ifM is torsion, thenM/mkOM =M

for sufficiently large k. �

We now want to understand the relevance of theΦ-invariant (4.13)

ΦD := ΦRD = IRD/I
2
RD

in our arithmetic context. Recall that we have a short exact sequence

0→ IRD → RD
πR→ O → 0 (4.35)

and so can express any element of RD = O + IRD in terms of its summands. Fur-
thermore, from the surjection RD/I2RD → RD/IRD

∼= O, we obtain the short exact
sequence

0→ ΦD → RD/I
2
RD
→ O → 0. (4.36)

The following result allows us to connect ΦD more directly with Galois represen-
tations.

Proposition 4.37. For any k ≥ 1, there is an isomorphism of O-modules

HomO(ΦD,O/mnO) ∼= HomD(GQ,O/mnO),

where HomD(GQ,O/mkO) denotes the mod mkO representations ofGQ of typeD = (Σ, pr)

(Def. 4.3).

Proof. (Case 1, n = 1.) We prove this by producing our desired isomorphism as
the composition of two other isomorphisms. For any complete noetherian local
O-algebra A, we have DefD(χ,A) = HomO−alg(RD, A). Letting k = O/mO denote
the residue field and takingA = k[ε]/(ε2) to denote the ring of dual numbers over
k, we first want to show that

HomO(ΦD, k) ∼= HomO−alg(RD, k[ε]/(ε
2)). (4.38)

As any f ∈ HomO−alg(RD, k[ε]/(ε
2)) is a local homomorphism, it is determined

by its restriction to IRD (4.35), and f|IRD (x) induces a homomorphism

α : IRD/I
2
RD

= ΦD → k.

Conversely any such homomorphism α defines for us an O-algebra homomor-
phism, establishing (4.38).

We now want to show that

DefD(χ, k[ε]/(ε
2)) ∼= HomD(GQ, k) (4.39)

by calculating the former. Let ρ ∈ DefD(χ, k[ε]/(ε
2)), which we can write as

ρ(g) = χ(g)(1+ χρ(g)ε) (4.40)
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for some function χρ : GQ → k for all g ∈ GQ. Since ρ(gh) = ρ(g)ρ(h) for all
g, h ∈ GQ and using that ε2 = 0 in k[ε]/(ε2), we see that

χ(gh)(1+ χρ(gh)ε) = χ(g)(1+ χρ(g)ε)χ(h)(1+ χρ(h))

= χ(g)χ(h)(1+ χρ(g)ε)(1+ χρ(h)ε)

so χρ(gh) = χρ(g) + χρ(h), and thus χρ : GQ → k is also a group homomorphism.
Since ρ is of type D = (Σ, pr), we must also have χρ|Iq trivial for q 6∈ Σ and χρ|Dp
factors through Gal(Qp(µpr)/Qp), so we have χρ ∈ HomD(GQ, k). Conversely,
such a homomorphism χρ uniquely determines a ρ ∈ DefD(χ, k[ε]/(ε

2)) via (4.40).
This establishes (4.39) and completes our proof of the case n = 1.

Case 2, arbitrary n ≥ 1. Consider the ring

An = O[ε]/(mnOε, ε2) = {a0 + a1ε : a0 ∈ O, a1 ∈ O/mnO}.

As in the n = 1 case above, we want to establish our desired isomorphism by
passing through

DefD(χ,An) ∼= Hom(RD, An)

as an intermediary.

Givenα ∈ HomD(GQ,O/mnO), we construct a deformation ρα : GQ → GL1(An)

via

ρα(g) = χ(g)(1+ α(g)ε),

which is of type D as χ—the O-valued Dirichlet character that we assume our
residual representation χ is the reduction of—is of type D by Lemma 4.5. By the
universal property of RD, we have an O-algebra homomorphism

φα : RD → An

corresponding to ρα. The map φα of O-algebras is determined by its restriction

φα|ID : ID → εO/mnO

and thus induces a map

ψα : ΦD → O/mnO
which yields our desired isomorphism.

Conversely, let ψ ∈ HomO(ΦD,O/mnO). By post-composing the universal de-
formation ρD : GQ → GL1(RD) with the quotient map, we get

ρ : GQ → GL1(RD/I
2
D).

Similarly, by post-composing ρχ : GQ → GL1(O) with the quotient map, we get

ρ ′ : GQ → GL1(RD/I
2
D).

Consider the map ρρ ′−1 : GQ → GL1(RD/I
2
D) obtained by taking the product,

which satisfies

ρρ ′−1 ≡ 1 (mod ID).

29



Recall that we have the short exact sequence (4.36)

0→ ΦD → RD/I
2
D → O → 0,

which induces the short exact sequence

1→ (1+ ID)/I
2
D → GL1(RD/I

2
D)→ GL1(O)→ 1,

noting that we can identify ID/I2D ∼= (1+ ID)/I
2
D via x 7→ 1+ x. This gives us

α = ρρ ′−1 : GQ → ΦD

which by composition with ψ gives us an element of HomD(GQ,O/mnO). �

Remark 4.41. The groups HomD(GQ,O/mnO) can thought of as examples of Selmer
groups (a.k.a. generalized class groups). In Wiles’s proof of Fermat’s Last Theorem,
various generalized cotangent spaces are interpreted as Selmer groups [Wil95,
Prop. 1.2.] as in Proposition 4.37. A key technical step—and source of the in-
famous gap in the original approach—was in calculating a precise upper bound
for the size of the relevant Selmer groups [Wil95, p.452–453]. While our main argu-
ment follows this strategy, many subtleties involved in the two-dimensional case
simply do not arise in the one-dimensional setting. For example, a great difficulty
encountered in Wiles’s proof is the critical case of reducible mod 3 representations,
but all one-dimensional representations are irreducible.

We endow the set of possible deformation data with the following partial or-
dering.

Definition 4.42. Given D = (Σ, pr) and D ′ = (Σ ′, pr
′
), we say that

D ′ ≥ D

if r ′ ≥ r and Σ ′ ⊃ Σ.

The following result allows us to drastically reduce the checks on the hypothe-
ses needed to apply our desired isomorphism theorem for rings (Theorem 4.30).

Lemma 4.43. (Induction on D) Let D ′ ≥ D. If

`(ΦD) ≤ `(O/ηD),

then

`(ΦD ′) ≤ `(O/ηD ′).

Proof. We have two cases to consider for a given datum D = (Σ, pr): (a) when we
augment the set of ramified primes Σ, and (b) when we increase the prime power
to pr

′
for r ′ > r.

Case (a): Suppose that Σ ′ = Σ ∪ {q} where q 6∈ Σ. Recall that

ηD = |(Z/NZ)×|O and ηD ′ = |(Z/qNZ)×|O
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by Proposition 4.32 and so

`(O/ηD ′) − `(O/ηD) = `(O/(q− 1)O) = vp(q− 1).

Thus, it suffices to show that

`(ΦD ′) − `(ΦD) ≤ `(O/(q− 1)O).

Recall that

HomO(ΦD,O/mnO) ∼= HomD(GQ,O/mnO)

for any integer n ≥ 1 by Proposition 4.37. The restriction map

HomD ′(GQ,O/mnO)→ Hom(Iq,O/mnO)

where Iq is the inertia subgroup at q induces the exact sequence

0→ HomD(GQ,O/mnO)→ HomD ′(GQ,O/mnO)→ Hom(Iq,O/mnO),

and so it follows that

`(HomO(ΦD ′ ,O/mnO)) ≤ `(HomD(GQ,O/mnO)) + `(Hom(Iq,O/mnO)).

We now want to calculate `(Hom(Iq,O/mnO)). More precisely, it suffices to
show that for sufficiently large n

`(Hom(Iq,O/mnO)) ≤ `(O/ηD ′) − `(O/ηD).

as our desired result would follow from it by allowing n→∞ by Lemma 4.33. To
prove this claim, we recall some facts about inertia subgroups.

Facts. (see, e.g. [Ser79, IV, §1–2]) Let q 6= p be a prime number,
and write Gq = Gal(Qq/Qq).

(i) There is a subnormal composition series

Gq B Iq B I1

where Iq denotes the inertia subgroup at q and I1 denotes the
wild inertia subgroup at q (i.e. the pro-q Sylow subgroup of Iq).
The successive quotients admit isomorphisms

Gq/Iq ∼= Gal(Fq/Fq) and Iq/I1 ∼= lim←−
n

(Fqn)×.

(ii) Given a generator Frobq ∈ Gal(Fq/Fq) ∼= Gq/Iq, we have

(Frobq)σ(Frobq)
−1 = σq

for σ ∈ Iq/I1.

Since the order of O/mnO is a power of p, any map α ∈ Hom(Iq ′ ,O/mnO) must
factor through the tame quotient Iq ′/I1. Similarly, as α comes by restricting from
GQ, (ii) shows that α comes from (Fq)×, the lowest possible degree, as it implies
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that α(σ) = α(σ)q, which means that α(σ)q−1 = 0. More precisely, as q - |O/mnO |,
we have

Im (Res : Hom(GQ,O/mOhn)→ Hom(Iq,O/mnO)) ∼= HomGQ(Iq/I1,O/mnO)

∼= HomGQ

(
lim←−
n

(Fqn)×,O/mnO

)
∼= Hom(F×q ,O/mnO)

where HomGQ denotes the subset of homomorphisms that extend to one coming
from GQ and the final isomorphism holds by (ii) and the fact that O/mnO is com-
mutative. Hence, for n sufficiently large,

`(Hom(Iq,O/mnO)) ≤ `(O/(q− 1)O) = `(O/ηD ′) − `(O/ηD),

establishing our claim.

Case (b): Now suppose that D = (Σ, pr) and D ′ = (Σ, pr+1). The approach
is similar to Case (a) in that we want to use Proposition 4.37 and a similar exact
sequence to obtain our inequality on lengths, but now we consider the restriction
maps

HomD ′(GQ,O/mnO)→ Hom((Ip ∩Gpr)/(Ip ∩Gpr+1))

where Gpi = Gal(Qp(µpi)/Qp). Note that we have a map

(Ip ∩Gpr)/(Ip ∩Gpr+1)→ Gal(Qp(µpr+1)/Qp(µpr)) ∼=

(Z/pZ)×, if r = 0

(Z/pZ), if r ≥ 0.

Inspired by this, we define the integer

`r =

0, if j = 0

`(O/pO), if j ≥ 0.

Thus, from the exact sequence corresponding to the restriction map above and the
kernel, we obtain

`(HomD ′(GQ,O/mnO)) ≤ `(HomD(GQ,O/mnO)) + `r

≤ `(O/ηD) + `r

= `(O/ηD ′)

as O/ηD ′ = O/|(Z/pNZ)×|O by Proposition 4.32. �

We can now establish our “R = T” theorem by checking that it holds for the
minimal datum D.

Theorem 4.44. LetA be any complete noetherian localO-algebra. Let ρ : GQ → GL1(A)

be a deformation of type D such that ρ = 1 (mod mA). Then ρ ∼= ρχ for some Dirichlet
character χ.
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Proof. Consider the minimal deformation datum D0 = (∅, p0). By Lemma 4.43, it
suffices to show that the quantities `(ΦD0) and `(O/ηD0) are equal.

For sufficiently large k, we have

`(ΦD0) = dim HomD0(GQ,O/mkO),

by Proposition 4.37. But then if ϕ ∈ HomD0(GQ,O/mkO), its kernel Ker(ϕ) would
be a closed subgroup that correponds to an everywhere unramified abelian exten-
sion of Q, which must be Q by Minkowski’s theorem (see e.g. [Neu99, III, Thm.
2.17–18]), hence Ker(ϕ) = GQ and so `(ΦD0) = 0. On the other side, we have

`(O/ηD0) = `(O/((Z/Z)×O)) = 0,

giving us the desired result. �

Of course, this finally yields Theorem 3.8 as a corollary by applying Theorem
4.44 to ρρ−10 and multiplying the result by ρ0.

5. INPUT FROM THE THEORY OF CYCLOTOMIC EXTENSIONS

So far, we have been able to avoid using too many specifics about cyclotomic
fields, aside from the elementary property that Gal(Q(µN)/Q) ∼= (Z/NZ)×. Nonethe-
less, an additional spark is needed to activate the modular deformation theory ma-
chinery (§4) for our proof of the Kronecker–Weber theorem. Different proofs of the
Kronecker–Weber theorem tend to exploit different structures of cyclotomic fields,
whether it is the units, the ideal class group, ramification groups, a decomposition
of a certain ideal generated by a Gauss sum upon a cyclotomic extension, etc. In
proofs of the Kronecker–Weber theorem that rely on an input from local fields, a
classification of the p-extensions of Qp—that is, the Galois extensions with a Galois
group of p-power order—is often what is required. We adopt this approach, as we
can naturally classify these p-extensions in terms of the mod p cyclotomic charac-
ter (Cor. 4.31) and its characterization in terms of a Galois character is closely re-
lated to our deformation theoretic approach. The most direct way to establish this
relation is through Galois cohomology, but this more abstract approach—which
is essential in the GL(2) version for modular forms—is not really needed for our
ultimate goal and would obscure the main thread of the argument.

Our goal in this section is to prove the following result, a sort of “weak local
Kronecker–Weber theorem for p-extensions.”

Lemma 5.1. Let E be a finite (abelian) p-extension of Qp. There exists an integer r ≥ 1
such that

E ⊂ F(µpr),

where F(µpr) is an abelian extension obtained by adjoining the pr-th roots of unity to an
unramified extension F of Qp.
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Remark 5.2. If we could replace Ewith any abelian extension of Qp and if we could
always take the unramified extension F in this lemma to be trivial, then this would
give a “local Kronecker–Weber theorem” more deserving of the name. However,
this stronger statement—which is more involved than our proof of Theorem 5.1—
is easily seen to be equivalent to the “global” Kronecker–Weber theorem of Theo-
rem 1.1, see [Was97, Ch. 14]. (See also [Neu99, V.1.9–10]).

To prove Lemma 5.1, we restrict ourselves to a basic form of Kummer theory,
which is concerned with field extensions obtained by adjoining an nth root. The
cases of odd primes p and p = 2must be treated separately, as the p-extensions of
Qp in these two cases are structured differently.

5.1. Cyclic p-extensions of Qp(µp) and Qp. We first recall the statements from
Kummer theory that we will use, see e.g. [Bir67, §2, Lem. 2 & 3].

Lemma 5.3. (Kummer theory) Let K be a field containing a primitivemth root of unity.

(i) All cyclic extensions of K of degreem are of the form K( m
√
α) for an α ∈ K.

(ii) If K( m
√
α) = K( m

√
β), then α and β generate the same subgroup in K×/(K×)m,

that is, α = βtγm for some γ ∈ K and t ∈ Z with gcd(m, t) = 1.

We use this to get the following characterization of cyclic p-extensions and
introduce the primary object of study in the proof of Lemma 5.1.

Corollary 5.4. The cyclic extensions of degree p of Qp(µp) that are abelian over Qp and
correspond to the subgroups of order p of the Gal(Qp(µp)/Qp)-module

[Qp(µp)
×/(Qp(µp)

×)p]χ :=

{α ∈ Qp(µp)
×/(Qp(µp)

×)p | σ(α) = χ(σ) · α = αχ(σ) for σ ∈ Gal(Qp(µp)/Qp)},

where χ = χp : Gal(Qp(µp)/Qp)→ GL1(Fp) denotes the mod p cyclotomic character.

Proof. Let E be a cyclic extension of Qp(µp) of degree p, so E is an abelian extension
of Qp and E = Qp(µp)( p

√
α) for some α ∈ Qp(µp) by Lemma 5.3(i). Given σ ∈

Gal(Qp(µp)/Qp), let σ̃ ∈ Gal(E/Qp) be an element such that σ̃|Qp(µp) = σ. Then
σ̃( p
√
α) ∈ E and

σ(α) = αtαp0

for some α0 ∈ Qp(µp) and a t ∈ Z that is not divisible by p by Lemma 5.3(ii). To
obtain our result, we want to determine this exponent t.

Let τ ∈ Gal(E/Qp(µp)) be the element where τ( p
√
α) = ζp

p
√
α. Since σ̃(ζp) =

ζ
χ(σ)
p and we want Gal(E/Qp) to be abelian, we have

ζtpσ̃(
p
√
α) = ζtpα

t/pα0 = τ(α
t/pα0) = τσ̃(

p
√
α)

= σ̃τ( p
√
α) = σ̃(ζp

p
√
α) = ζχ(σ)p σ̃( p

√
α)

and so t = χ(σ) = χp(σ). �
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For notational simplicity, let ζ = ζp denote a primitive pth root of unity and
χ = χp denote the mod p cyclotomic character for the remainder of the section.

Lemma 5.5. Assume that p 6= 2. Let O = Zp[ζ] and write π = 1 − ζ, which is a
uniformizer for O (i.e. mO = (π)).

(i) The set of pth powers of 1+ πO is 1+ πp+1O.
(ii) If p 6= 2, the natural inclusion of the finite group

(1+ πO)/(1+ πp+1O) ↪→ Qp(µp)
×/(Qp(µp)

×)p (5.6)

induces an isomorphism of corresponding χ-eigenspaces.

Proof of (i). Let Φp(x) = xp−1 + xp−2 + · · · + x + 1 denote the p-th cyclotomic
polynomial. We have

p = Φp(1) = (1− ζ)(1− ζ2) · · · (1− ζp−1)

= (1− ζ)p−1
(1− ζ)(1− ζ2) · · · (1− ζp−1)

(1− ζ)p−1

= (1− ζ)p−1u0 = π
p−1u0

where
u0 = (1+ ζ)(1+ ζ+ ζ2) · · · (1+ ζ+ · · ·+ ζp−2) ∈ O×.

Modulo π = 1− ζ, we have

u0 ≡ 2 · 3 · · · · (p− 1) ≡ (p− 1)! ≡ −1 (mod π) (5.7)

by Wilson’s theorem, as π | p.

Now, if x ∈ 1+ πO, we can write

x = 1+ πa+ π2b

for some a, b ∈ O. Thus, we have

xp ≡ (1+ πa+ π2b)p ≡ 1+ pπa+ πpap (mod πp+1)

≡ 1+ (πp−1u0)πa+ πpap (mod πp+1)

≡ 1+ πp(au0 + ap) (mod πp+1).

Note that au0+ap ≡ −a+ap (mod π) by (5.7). As a ∈ O, we can write a = α+βζ

for α,β ∈ Zp. Using the fact that π | p, we see that

ap − a ≡ (α+ βζ)p − α+ βζ ≡ αp − α+ βp − β ≡ 0 (mod π),

as Fermat’s little theorem γp ≡ γ (mod p) holds for elements γ ∈ Zp. Thus, we
have π | (ap − a) and so (1+ πO)p ⊂ 1+ πp+1O.

Conversely, suppose that α ≡ 1 (mod πp+1). We want to find an x ∈ O such
that xp = α and x ≡ 1 (mod π). To do so, we use the following argument, which
is along the lines of Hensel’s lemma. It suffices to construct a sequence {xi} where
xi ∈ 1+ πO for i ≥ p+ 1with the properties

xpi ≡ α (mod πi) and xi ≡ xi+1 (mod πi+1−p) (5.8)
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as then xi → x and xp = α. We construct this sequence as follows. Set xp+1 = 1.
Given any xi, we have

α

xpi
≡ 1+ ciu0πi (mod πi+1)

for some ci ∈ O by the first property of (5.8), so we define

xi+1 = xi(1+ ciu0π
i+1−p).

This satisfies the second property of (5.8), so it remains to check the first. Using
that p = πp−1u0, we verify that

xpi+1 ≡ x
p
i (1+ ciπ

i+1−p)p ≡ xpi (1+ cipπ
i+1−p) (mod πi+1)

≡ xpi (1+ ciu0π
i) (mod πi+1)

≡ α (mod πi+1).

Hence, we conclude that 1+ πp+1O ⊂ (1+ πO)p as desired. �

Proof of (ii). Given α ∈ Qp(µp)×/(Qp(µp)×)p, let α̂ ∈ Qp(µp) be a choice of rep-
resentative. We can write

α̂ = πhη

for some h ∈ Z and η ∈ O×. The condition that α ∈ [Qp(µp)×/(Qp(µp)×)p]χ (as
in Cor. 5.4) is that for σ ∈ Gal(Qp(µp)/Qp), we have

σ(π)hσ(η) = σ(α̂) = α̂χ(σ)βp = πχ(σ)hηχ(σ)βp.

for some β ∈ Qp(µp)× and so is equivalent to χ(σ)h ≡ h (mod p). As p 6= 2, we
have χ(σ) 6= 1 and so h ≡ 0 (mod p), so if α lies in the χ-eigenspace, we can take
α̂ = γ ∈ Qp(µp)×/(Qp(µp)×)p where γ ∈ O. In particular, this applies to the
image of (1+ πO)/(1+ πp+1O) in α ∈ Qp(µp)×/(Qp(µp)×)p under the inclusion
map (5.6) of part (i) and so if x ∈ [Qp(µp)×/(Qp(µp)×)p]χ then, it lies in this
image. �

We can now establish the key fact about abelian p-extensions of Qp that is
needed to prove Lemma 5.1.

Corollary 5.9. If p 6= 2, the maximal abelian extension of Qp of exponent p is of degree
p2 and is obtained by joining the p2-th roots of unity to an unramified extension of degree
p.

Proof. Let V = (1 + πO)/(1 + πp+1O). We want to show that its χ-eigenspace has
the property

|Vχ| = p2.

Note that ζ ∈ Vχ, as σ(1− π) = σ(ζ) = ζχ(σ), and we have the identity

σ(π)

π
≡ 1− ζ

χ(σ)

1− ζ
≡ 1+ ζ+ · · ·+ ζχ(σ)−1 ≡ χ(σ) (mod π). (5.10)
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Let v ∈ Vχ. By multiplying with an appropriate power of ζ, we can assume
that v ≡ 1 (mod π2) and more generally that

v ≡ 1+ aiπi (mod πi+1)

for some ai ∈ Z. As (5.10) holds and v ∈ Vχ, we have

1+ aiπ
iχ(σ)i ≡ σ(v) (mod πi+1)

≡ vχ(σ) (mod πi+1)

≡ (1+ aiπ
i)χ(σ) (mod πi+1)

and so

aiχ(σ)
i ≡ aiχ(σ) (mod π)

which implies that ai ≡ 0 (mod π) or i = p. Thus, we can write v = 1 + aπp

(mod πp+1) and so

Vχ = 〈ζ, 1+ πp〉 ,

and so |Vχ| = p2, as desired. �

5.2. Proof of Lemma 5.1 for p odd. Recall that the finite unramified extensions of
Qp correspond to finite extensions of the residue field Fp and so for any integer
n ≥ 1, there is a unique unramified extension of Qp of degree n. (For this and
other facts about extensions of Qp that we use here, see [Ser79, IV.4].)

To prove the lemma, our strategy is to determine Qp(m), the maximal abelian
extension of Qp of exponent pm, which contains in particular, the unramified ex-
tension of degree pm and the degree pm extension included in Qp(µpm+1). We
can express Gal(Qp(m)/Qp) ∼=

∏k
i=1 Z/pmZ. We want to determine the number

of factors k that occur. The number of factors is the same as that of Gal(QP(1)/Qp).
As p 6= 2, we have [Qp(1) : Qp] = p2 by Corollary 5.9, so Gal(Qp(m)/Qp) admits
a presentation with at most two generators. As we know two linearly disjoint ex-
tensions in Qp(1)—the unramified extension of degree p and the totally ramified
degree-p subextension of Qp(µp2)—we must have

Gal(Qp(1)/Qp) ∼= Z/pZ× Z/pZ.

Hence, for anym ≥ 1, we have

Gal(Qp(m)/Qp) ∼= Z/pmZ× Z/pmZ.

giving us the result in this case. �

5.3. Proof of Lemma 5.1 for p = 2. As Lemma 5.5 and Corollary 5.9 rely on the
prime p being odd, we require a different argument to tackle the p = 2 case. In
this setting, we simply determine the structure of the Galois groups directly.

For any integerm ≥ 0, we have

Gal(Q2(µ2m+2)/Q2) ∼= (Z/2m+2Z)× ∼= Z/2Z× Z/2mZ. (5.11)
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Our goal is to show that

Gal(Q2(m)/Q2) ∼= Z/2Z× Z/2mZ× Z/2mZ,

where the first two factors come from Gal(Q2(µ2m+2)/Q2) and the remaining
Z/2mZ factor corresponds to the unramified extensions. We prove this in stages.

Case m = 1. Since Q2(1) is just the compositum of the quadratic extensions
of Q2, we look for these directly. By Kummer theory (Theorem 5.3), these are
classified by subgroups of

Q×2 /(Q
×
2 )
2 ∼= Z/2× Z/2× Z/2 ∼= {2a(−1)b5c}

(see, e.g. [Ser73, II, §3.3, Cor. of Thm 4]). The three factors here correspond to
Q2(
√
2), Q2(

√
−1), and Q2(

√
5), of which Q2(

√
−1) denotes the sole unramified

extension. Hence,

Gal(Q2(1)/Q2) ∼= Z/2Z× Z/2Z× Z/2Z. (5.12)

General case. Since we know that Gal(Q2(m)/Q2) has two disjoint quotients
of order 2m—the unramified extension and totally ramified one from (5.11)—and
(5.12) from them = 1 case, the Galois group of Q2(m) over Q2 must be of the form

Gal(Q2(m)/Q2) ∼= Z/2mZ× Z/2mZ× Z/2kZ

for some integer k ≥ 1. We will show that k = 1 regardless of our choice of integer
m by computing Gal(Q2(2)/Q2).

Abstractly, Gal(Q2(2)/Q2) ∼= Z/4Z × Z/4Z × Z/2kZ. Suppose for the sake
of contradiction that k 6= 1. Then Gal(Q2(2)/Q2) ∼= Z/4Z × Z/4Z × Z/4Z. This
would imply that all quadratic extensions of Q2—which would all be contained
in Q2(2)—arise as subfields of a Z/4Z-extension. We will show that this is false,
via the following characterization of such fields.

Claim. Let F be a field of characteristic not equal to 2. If F(
√
α) is

contained in a cyclic extension of degree 4, then α = x2 + y2 for
some x, y ∈ F.

Proof of Claim. Suppose that F(
√
α) ⊂ K, where K is a cyclic exten-

sion of F of degree 4. Then

K = F

(√
α,

√
u+ v

√
α

)
for some u, v ∈ F by Theorem 5.3(i). The Galois closure of K is
F(
√
α,
√
u+ v

√
α,
√
u− v

√
α) and as K/F is Galois with Galois

group G = Z/4Z, we must have

KG = F = F(
√
α(u2 − v2α)) ( F(

√
α,
√
u2 − v2α)

which is equivalent to α not being a square and α(u2−v2α) being
a square in F.
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Write α(u2 − v2α) = c2 for some c ∈ F, so αu2 = c2 + v2α2,
and thus

α =
( c
u

)2
+
(vα
u

)2
as desired. �

We apply this claim to Q2(
√
−1). Here we find that Q2(

√
−1) cannot be con-

tained in a cyclic extension of degree 4, as −1 = x2 + y2 cannot hold modulo 4, as
only 0 and 1 are quadratic residues modulo 4. Thus, we have a contradiction and
so we must have k = 1. �

6. PROOFS OF THE MAIN THEOREMS

We can now assemble our preliminary results and prove our main theorems.

6.1. Proof of the “modular” Kronecker–Weber Theorem (Theorem 1.2). Let K
be a finite abelian extension of Q and write G = Gal(K/Q) for its Galois group.
By the classification of finitely generated abelian groups, G must be a product of
cyclic groups of prime-power order. Since K can be expressed as a compositum
of appropriate intermediate extensions of prime-power degree, we are reduced to
the case where |G| = pn for some prime p.

Thus, let K be a Z/pnZ-extension of Q and let O denote the ring of integers of
the local field Qp(µpn), writing mO for its maximal ideal. We have a homomor-
phism

ξ : Gal(K/Q) ∼= Z/pnZ→ GL1(O)

where ξ(1) = ζpn , a primitive pn-th root of unity. Under the quotient GQ �

Gal(K/Q), we get a homomorphism ρ : GQ → GL1(O) that factors through ξ:

GQ

$$

ρ // GL1(O)

Gal(K/Q)

ξ
88

As the residue field k = O/mO is of characteristic p, we must have ρ ≡ 1 (mod mO),
that is, the residual representation ρ : GQ → GL1(k) obtained by composing ρwith
the quotient map GL1(O)→ GL1(k) is trivial. We want to show that ρ is a modular
deformation of the trivial residual representation 1 = 1 (mod mO) : GQ → GL1(k)

for some prescribed deformation datum D (Def. 4.3).

Note that ρ is unramified outside of the finite set of places Σ at which K is
ramified. By Lemma 5.1, ρ is a deformation of 1 of type D = (Σ, pr) for some
integer r ≥ 1. By Theorem 4.44, this implies that ρ ∼= ρχ, where χ is a Dirichlet

character of some conductor N and so K ⊆ Q
Ker(ρ)

= Q
Ker(ρχ) ⊆ Q(ζN). �
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6.2. The classical Kronecker–Weber theorem (Theorem 1.1). We now show that
Theorem 1.2 implies the familiar form of the Kronecker–Weber theorem (Theorem
1.1).

LetK be a finite Galois extension of Q with abelian Galois groupG = Gal(K/Q).
Since the formation of Artin L-functions is invariant under induction (see e.g.
[Lan94, XII, §2–3]), the Dedekind zeta function ζK(s) =

∑
0 6=a⊂OK

1
(Na)s for K ad-

mits the factorization
ζK(s) =

∏
ρ∈Ĝ

L(ρ, s), (6.1)

where Ĝ denotes the group of characters of G and

L(ρ, s) =
∏

p⊂OK

1

1− ρ(Frobp)(Np)−s
,

where ρ(Frobp) refers to the image of the Frobenius element at p in the induced
Galois representation on CIp for Ip the inertia group at p.

Using this interpretation, we can exploit the modularity of ρ via Theorem 1.2
to finally prove the classical Kronecker–Weber theorem (Theorem 1.1).

Corollary 6.2. Let K be an abelian extension of Q. Then there exists an integer m ≥ 1
such that K ⊂ Q(µm), them-th cyclotomic field.

Proof. By passing to the Galois closure, we can assume without loss of generality
that K is a Galois extension of Q. By (6.1) and Theorem 1.2, we have a factorization

ζK(s) =

m∏
i=1

L(χi, s)

where the product runs over some finite set of Dirichlet characters {χ1, . . . , χm}

and L(χi, s) =
∑∞
n=1

χi(n)
ns

denotes the corresponding Dirichlet L-function. Let m
be the least common multiple of the conductors N(χi) of χi for all i. We want to
show that K ⊂ Q(µm).

Recall that E/Q is an intermediate Galois extension of a number field F/Q if
and only if all but finitely many of the rational primes p that split completely in F
also split completely in E (e.g. [Mar77, Thm. 29, Cor.]). We want to apply this to
E = K and F = Q(µm). If p - m, then p splits completely in Q(µm) if and only if
p ≡ 1 (mod m) (e.g. [Bir67, Cor., p.88]). Pick such a prime p. For any character
χ modulo m, we thus have χ(p) = 1, so for any Dirichlet character χi above, we
have χi(p) = 1. By Theorem 1.2, we must have ρ(Frobp) = 1 for all ρ ∈ Ĝ, so
Frobp = 1 ∈ G. Hence, p splits completely in K. We conclude that K ⊂ Q(µm). �
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