Exponential growth of $H^{4 g-6}\left(\mathcal{M}_{g} ; \mathbf{Q}\right)$, Part I: Universal enveloping algebras and the Poincaré-Birkhoff-Witt theorem

Brian Hwang* (with Claudia Yun** \& Shiyue Li**)
*Cornell University, **Brown University
2020 Summer Tropical Algebraic Geometry Online SeminAUR (STAGOSAUR), Group E2

Slides available at:
http://brianhwang.com/slides/2020stagosaur.pdf

Our story thus far

Our goal: [Chan-Galatius-Payne, Thm. 2.7] To weave the previous results together to show that $H^{4 g-6}\left(\mathcal{M}_{g} ; \mathbf{Q}\right)$ grows at least exponentially in g for $g=3,5$, and $g \geq 7$.

What's left?
The general idea: To show the desired growth, we use Willwacher's theorem and Brown's theorem, which together show that there is a free Lie algebra $\operatorname{Lie}(V)$ that injects into the $H^{4 g-6}$'s.

Our group will focus on showing how this part, coming from this free Lie algebra, grows exponentially in g.

Your guides:

I. Background on Lie algebras, in particular, universal enveloping algebras and the Poincaré-Birkhoff-Witt theorem (Brian)
II. The key calculation: computation of the Poincaré series of a free Lie algebra (Claudia)
III. How everything ties together to prove our main theorem (Shiyue)

Context: Why are Lie algebras relevant here?

Consider the graded \mathbf{Q}-vector space

$$
V=\mathbf{Q}\left\langle\sigma_{2 i+1} \mid i \geq 1\right\rangle
$$

where $\sigma_{2 i+1}$ lies in degree $2 i+1$.
We're interested in the free Lie algebra $\operatorname{Lie}(V)$ on V, that is, it is a graded Lie algebra (i.e. \mathbf{Q}-vector space with binary operation [,]) with no relations other than the minimum necessary to make it a Lie algebra:

1. (bilinearity): $[a x+b y, z]=a[x, z]+b[y, z]$ and $[z, a x+b y]=a[z, x]+b[z, y]$ for all $a, b \in \mathbf{Q}$ and $x, y, z \in \operatorname{Lie}(V)$
2. (skew-symmetry): $[x, x]=0$ for all $x \in \operatorname{Lie}(V)$
3. (Jacobi identity): for all $x, y, z \in \operatorname{Lie}(V)$

$$
[x,[y, z]]+[z,[x, y]]+[y,[z, x]]=0
$$

Why do we care?

A. Willwacher's theorem gives an isomorphism between the Grothendieck-Teichmüller Lie algebra $\mathfrak{g r t}_{1}$ and the degree 0 part of graph cohomology $H^{0}(\mathrm{GC})$. Brown's theorem says that $\mathfrak{g r t}_{1}$ contains the free Lie algebra $\operatorname{Lie}(V)$ generated by symbols $\sigma_{2 i+1}$ for each $i \geq 1$. Together, we obtain a grading-preserving injection

$$
\operatorname{Lie}(V) \hookrightarrow \mathfrak{g r t}_{1} \cong H^{0}(\mathrm{GC}) \cong\left(\bigoplus_{g \geq 2} H_{0}\left(G^{(g)}\right)\right)^{\vee} \subset \bigoplus_{g \geq 2} H^{4 g-6}\left(\mathcal{M}_{g} ; \mathbf{Q}\right)
$$

Upshot: This is how we produce a large number of elements in $H^{4 g-6}$ and gives us a lower bound on its size (i.e. its dimension as a vector space over \mathbf{Q}).
Q. How do we calculate the dimension of $\operatorname{Lie}(V)$?
A. This has a classical answer using standard Lie-theoretic tools, namely, the universal enveloping algebra and the Poincaré-Birkhoff-Witt theorem.

Why the universal enveloping algebra and the PBW

 theorem?Q. How do you construct Lie algebras?

The proto-example of a Lie algebra is an arbitrary associative algebra A together with the bracket given by commutation:

$$
[x, y]=x y-y x .
$$

Then $(A,[]$,$) satisfies [x, x]=0$ and the Jacobi identity.
Not all Lie algebras arise in this way. For example, we could take a "Lie subring" $B \subset A$, that is, an additive subgroup that is closed under commutation. As B does not need to arise from an associative subring, this gives a new class of examples.

The Poincaré-Birkhoff-Witt theorem says that these two operations suffice to realize all Lie algebras: exhibit a suitable associative algebra, change the operation to commutation, pass to a suitable Lie subalgebra.

Universal Enveloping Algebra

The universal enveloping algebra $U(L)$ of the free Lie algebra $L=\operatorname{Lie}(V)$ defined on a set V is the free (unital) associative algebra generated by V, that is, the ∞-dimensional \mathbf{Q}-vector space

$$
U(L)=\bigoplus_{\text {words } w \text { in } V} \mathbf{Q} w
$$

where multiplication is by concatenation of words:

$$
\left(a v_{i_{1}} v_{i_{2}} \cdots v_{i_{\ell}}\right) \cdot\left(b v_{j_{1}} v_{j_{2}} \cdots v_{j_{m}}\right)=a b v_{i_{1}} v_{i_{2}} \cdots v_{i_{\ell}} v_{j_{1}} v_{j_{2}} \cdots v_{j_{m}}
$$

This multiplication is also \mathbf{Q}-bilinear, but is associative, in contrast to ($\operatorname{Lie}(V),[]$,

Mnemonic. $U(\operatorname{Lie}(V))$ is a "polynomial" Q-algebra where the variables are the elements of V, but where the variables do not commute (" $v_{i} v_{j} \neq v_{j} v_{i}$ " for $i \neq j$).

What's so universal about $U(L)$?

Given a basis $\left\{x_{i}\right\}$ for L, we write $\left\{X_{i}\right\}$ for the corresponding generators of $U(L)$. This gives us a canonical linear map

$$
\iota: L \rightarrow U(L)
$$

defined by $\iota\left(x_{i}\right)=X_{i}$. In particular, we must have

$$
\iota\left(\sum_{k} a_{i j}(k) x_{k}\right)=\iota\left(\left[x_{i}, x_{j}\right]\right)=X_{i} X_{j}-X_{j} X_{i}=\sum_{k} a_{i j}(k) X_{k}
$$

The algebra $U(L)$ admits the following universal property: Given any Lie algebra homomorphism $\phi: L \rightarrow A$ where A is an associative algebra with its induced (commutator) [,], there exists a unique (algebra) homomorphism $\bar{\phi}: U(L) \rightarrow A$ such that the following diagram commutes:

How does $U(L)$ relate to $L=\operatorname{Lie}(V)$?

This relation is given by the Poincaré-Birkhoff-Witt theorem, which has a number of equivalent formulations and generalizations. Abstractly, it relates an algebra with a filtration to its associated graded algebra. We use the following formulation.

Thm. (Poincaré-Birkhoff-Witt) If $\left\{x_{1}, x_{2}, \ldots\right\}$ is a (totally) ordered basis for a Lie algebra L, then $\left\{X_{1}^{b_{1}} X_{2}^{b_{2}} \cdots \mid b_{i} \geq 0\right\}$ is a basis (called a "PBW basis") for the universal enveloping algebra $U(L)$.

Cor. The canonical algebra map $\iota: L \rightarrow U(L)$ defined by $\iota\left(x_{i}\right)=X_{i}$ is injective. In particular, L is isomorphic to a Lie subalgebra of an associative algebra.

Rem. We are implicitly using the fact that we are working over a field.

Why is the Poincaré-Birkhoff-Witt theorem a "theorem"?

Q. What makes this result nontrivial?

It's clear that the basis elements $\left\{X_{1}^{b_{1}} X_{2}^{b_{2}} \cdots \mid b_{i} \geq 0\right\}$ span $U(L)$: we can use the structure constants on $\operatorname{Lie}(V)$

$$
[y, z]=\sum_{v \in V} c_{y, z}^{v} v
$$

to reduce an arbitrary product $X_{i_{1}}^{c_{1}} X_{i_{2}}^{c_{2}} \cdots$ in $U(L)$ to one of the form $X_{1}^{b_{1}} X_{2}^{b_{2}} \cdots$.
What's not obvious is that these elements are linearly independent and that the end result of the reduction is unique and is independent of the order in which you swap elements to get into "normal form," that is, to lie in the span of our PBW basis.

Example: A case of the PBW Theorem for $L=\mathfrak{s l}_{2}(\mathbf{C})$

PBW says: The associative algebra $U\left(\mathfrak{s l}_{2}(\mathbf{C})\right)$ has as a vector space basis

$$
\left\{F^{a} H^{b} E^{c}: a, b, c \geq 0\right\} .
$$

Let's see this in action. Recall that the relations in $U\left(\mathfrak{s l}_{2}(\mathbf{C})\right)$ are

$$
E F-F E=H, \quad H E-E H=2 E, \quad H F-F H=-2 F .
$$

Consider, for example, the following way to get an element into normal form:

$$
\begin{aligned}
H E F & =H(H+F E)=H^{2}+H F E \\
& =H^{2}+(F H-2 F) E=H^{2}+F H E-2 F E .
\end{aligned}
$$

It easy to see that this kind of procedure works in general, so the PBW basis at least spans $U\left(\mathfrak{s l}_{2}(\mathbf{C})\right)$.
What's less clear:

- Any other possible sequence of substitution will ultimately result in the same expression in the PBW basis.
- Linear independence of the basis elements (Why are, say, E and F linearly independent?).

Back to proof: What is $U(\operatorname{Lie}(V))$?

Let's return to the free Lie algebra $L=\operatorname{Lie}(V)=\left\langle\sigma_{3}, \sigma_{5}, \sigma_{7}, \ldots\right\rangle$ where σ_{d} lies in degree d. What is $U(L)$?
As L is a free Lie algebra, our construction of $U(L)$ tells us that

$$
U(L) \cong \bigoplus_{n \geq 0} V^{\otimes n}
$$

The PBW theorem says that $\left\{\sigma_{3}^{d_{3}} \sigma_{5}^{d_{5}} \sigma_{7}^{d_{7}} \cdots \mid d_{i} \geq 0\right\}$ is a basis for $U(L)$. Together, these tell us that as graded vector spaces,

$$
U(L) \cong \operatorname{Sym}(L):=\bigoplus_{n \geq 0} L^{\otimes n} / I_{n}
$$

where

$$
I_{n}=\left\langle\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}-x_{\tau(1)} \otimes x_{\tau(2)} \otimes \cdots \otimes x_{\tau_{n}}\left|\tau \in \mathfrak{S}_{n}\right\rangle\right.\right.
$$

Summary and towards the key calculation

What have we done so far?

- Defined the Lie algebra $L=\operatorname{Lie}(V)$ contained in $H^{6}\left(\mathcal{M}_{3} ; \mathbf{Q}\right) \oplus H^{14}\left(\mathcal{M}_{5} ; \mathbf{Q}\right) \oplus \bigoplus_{g \geq 7} H^{4 g-6}\left(\mathcal{M}_{g} ; \mathbf{Q}\right)$.
- Constructed an associative algebra $U(L)$ that contains L as a Lie subalgebra (with respect to the commutator [,] on $U(L)$).
- Used the Poincaré-Birkhoff-Witt theorem to show that

$$
\begin{equation*}
U(\operatorname{Lie}(V)) \cong \operatorname{Sym}(\operatorname{Lie}(V)) \tag{*}
\end{equation*}
$$

as graded vector spaces.
Next: Use the identification $(*)$ to calculate the dimension of the degree d-part $\operatorname{dim}_{\mathbf{Q L i e}(V)_{d}}$ of $\operatorname{Lie}(V)$ and determine the growth rate as $d \rightarrow \infty$.

