Exponential growth of $H^{4g-6}(\mathcal{M}_g; \mathbf{Q})$, Part I: Universal enveloping algebras and the Poincaré–Birkhoff–Witt theorem

Brian Hwang* (with Claudia Yun** & Shiyue Li**)

*Cornell University, **Brown University

2020 Summer Tropical Algebraic Geometry Online SeminAUR (STAGOSAUR), Group E2

Slides available at:

Our story thus far

Our goal: [Chan-Galatius-Payne, Thm. 2.7] To weave the previous results together to show that $H^{4g-6}(\mathcal{M}_g; \mathbf{Q})$ grows at least exponentially in g for g = 3, 5, and $g \ge 7$.

What's left?

The general idea: To show the desired growth, we use Willwacher's theorem and Brown's theorem, which together show that there is a free Lie algebra Lie(V) that injects into the H^{4g-6} 's.

Our group will focus on showing how this part, coming from this free Lie algebra, grows exponentially in g.

Your guides:

- I. Background on Lie algebras, in particular, universal enveloping algebras and the Poincaré–Birkhoff–Witt theorem (Brian)
- II. The key calculation: computation of the Poincaré series of a free Lie algebra (Claudia)
- III. How everything ties together to prove our main theorem (Shiyue)
 http://brianhwang.com/slides/2020stagosaur.pdf

Context: Why are Lie algebras relevant here?

Consider the graded **Q**-vector space

$$V = \mathbf{Q} \left\langle \sigma_{2i+1} \mid i \ge 1 \right\rangle$$

where σ_{2i+1} lies in degree 2i + 1.

We're interested in the **free Lie algebra** Lie(V) on V, that is, it is a graded Lie algebra (i.e. **Q**-vector space with binary operation [,]) with no relations other than the minimum necessary to make it a Lie algebra:

- 1. (bilinearity): [ax + by, z] = a[x, z] + b[y, z] and [z, ax + by] = a[z, x] + b[z, y] for all $a, b \in \mathbf{Q}$ and $x, y, z \in \text{Lie}(V)$
- 2. (skew-symmetry): [x, x] = 0 for all $x \in \text{Lie}(V)$
- 3. (Jacobi identity): for all $x, y, z \in \text{Lie}(V)$

$$[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.$$

Why do we care?

A. Willwacher's theorem gives an isomorphism between the Grothendieck–Teichmüller Lie algebra \mathfrak{grt}_1 and the degree 0 part of graph cohomology $H^0(GC)$. Brown's theorem says that \mathfrak{grt}_1 contains the free Lie algebra Lie(V) generated by symbols σ_{2i+1} for each $i \geq 1$. Together, we obtain a grading-preserving injection

$$\mathsf{Lie}(V) \hookrightarrow \mathfrak{grt}_1 \cong H^0(\mathsf{GC}) \cong \left(\bigoplus_{g \ge 2} H_0(\mathcal{G}^{(g)})\right)^{\vee} \subset \bigoplus_{g \ge 2} H^{4g-6}(\mathcal{M}_g; \mathbf{Q}).$$

Upshot: This is how we produce a large number of elements in H^{4g-6} and gives us a lower bound on its size (i.e. its dimension as a vector space over **Q**).

Q. How do we calculate the dimension of Lie(V)?

A. This has a classical answer using standard Lie-theoretic tools, namely, the universal enveloping algebra and the Poincaré–Birkhoff–Witt theorem. http://brianhwang.com/slides/2020stagosaur.pdf

Why the universal enveloping algebra and the PBW theorem?

Q. How do you construct Lie algebras?

The proto-example of a Lie algebra is an arbitrary associative algebra *A* together with the bracket given by *commutation*:

$$[x,y]=xy-yx.$$

Then (A, [,]) satisfies [x, x] = 0 and the Jacobi identity.

Not all Lie algebras arise in this way. For example, we could take a "Lie subring" $B \subset A$, that is, an additive subgroup that is closed under commutation. As B does not need to arise from an *associative* subring, this gives a new class of examples.

The Poincaré–Birkhoff–Witt theorem says that these two operations suffice to realize all Lie algebras: exhibit a suitable associative algebra, change the operation to commutation, pass to a suitable Lie subalgebra.

Universal Enveloping Algebra

The **universal enveloping algebra** U(L) of the free Lie algebra L = Lie(V) defined on a set V is the free (unital) *associative* algebra generated by V, that is, the ∞ -dimensional **Q**-vector space

$$U(L) = \bigoplus_{\text{words } w \text{ in } V} \mathbf{Q}w$$

where multiplication is by concatenation of words:

$$(av_{i_1}v_{i_2}\cdots v_{i_\ell})\cdot(bv_{j_1}v_{j_2}\cdots v_{j_m})=abv_{i_1}v_{i_2}\cdots v_{i_\ell}v_{j_1}v_{j_2}\cdots v_{j_m}.$$

This multiplication is also **Q**-bilinear, but is associative, in contrast to (Lie(V), [,])

Mnemonic. U(Lie(V)) is a "polynomial" **Q**-algebra where the variables are the elements of V, but where the variables *do not* commute (" $v_i v_j \neq v_j v_i$ " for $i \neq j$).

What's so universal about U(L)?

Given a basis $\{x_i\}$ for *L*, we write $\{X_i\}$ for the corresponding generators of U(L). This gives us a canonical linear map

 $\iota: L \to U(L)$

defined by $\iota(x_i) = X_i$. In particular, we must have

$$\iota\left(\sum_{k}a_{ij}(k)x_{k}\right)=\iota([x_{i},x_{j}])=X_{i}X_{j}-X_{j}X_{i}=\sum_{k}a_{ij}(k)X_{k}.$$

The algebra U(L) admits the following universal property: Given any Lie algebra homomorphism $\phi : L \to A$ where A is an associative algebra with its induced (commutator) [,], there exists a unique (algebra) homomorphism $\overline{\phi} : U(L) \to A$ such that the following diagram commutes:

How does U(L) relate to L = Lie(V)?

This relation is given by the Poincaré–Birkhoff–Witt theorem, which has a number of equivalent formulations and generalizations. Abstractly, it relates an algebra *with a filtration* to its *associated graded* algebra. We use the following formulation.

Thm. (Poincaré–Birkhoff–Witt) If $\{x_1, x_2, ...\}$ is a (totally) ordered basis for a Lie algebra L, then $\{X_1^{b_1}X_2^{b_2}\cdots \mid b_i \ge 0\}$ is a basis (called a "PBW basis") for the universal enveloping algebra U(L).

Cor. The canonical algebra map $\iota : L \to U(L)$ defined by $\iota(x_i) = X_i$ is *injective*. In particular, *L* is isomorphic to a Lie subalgebra of an associative algebra.

Rem. We are implicitly using the fact that we are working over a field.

Why is the Poincaré-Birkhoff-Witt theorem a "theorem"?

Q. What makes this result nontrivial?

It's clear that the basis elements $\{X_1^{b_1}X_2^{b_2}\cdots \mid b_i \ge 0\}$ span U(L): we can use the structure constants on Lie(V)

$$[y,z] = \sum_{v \in V} c_{y,z}^v v$$

to reduce an arbitrary product $X_{i_1}^{c_1}X_{i_2}^{c_2}\cdots$ in U(L) to one of the form $X_1^{b_1}X_2^{b_2}\cdots$.

What's not obvious is that these elements are *linearly independent* and that the end result of the reduction is *unique* and is *independent of the order* in which you swap elements to get into "normal form," that is, to lie in the span of our PBW basis.

Example: A case of the PBW Theorem for $L = \mathfrak{sl}_2(\mathbb{C})$ PBW says: The associative algebra $U(\mathfrak{sl}_2(\mathbb{C}))$ has as a vector space basis

$$\{F^aH^bE^c:a,b,c\geq 0\}.$$

Let's see this in action. Recall that the relations in $U(\mathfrak{sl}_2(\mathbf{C}))$ are

$$EF - FE = H$$
, $HE - EH = 2E$, $HF - FH = -2F$.

Consider, for example, the following way to get an element into normal form:

$$HEF = H(H + FE) = H^{2} + HFE$$
$$= H^{2} + (FH - 2F)E = H^{2} + FHE - 2FE$$

It easy to see that this kind of procedure works in general, so the PBW basis at least spans $U(\mathfrak{sl}_2(\mathbf{C}))$.

What's less clear:

- Any other possible sequence of substitution will ultimately result in the same expression in the PBW basis.
- Linear independence of the basis elements (Why are, say, E and F linearly independent?). http://brianhwang.com/slides/2020stagosaur.pdf

Back to proof: What is U(Lie(V))?

Let's return to the free Lie algebra $L = \text{Lie}(V) = \langle \sigma_3, \sigma_5, \sigma_7, \ldots \rangle$ where σ_d lies in degree d. What is U(L)?

As L is a free Lie algebra, our construction of U(L) tells us that

$$U(L)\cong \bigoplus_{n\geq 0}V^{\otimes n}$$

The PBW theorem says that $\{\sigma_3^{d_3}\sigma_5^{d_5}\sigma_7^{d_7}\cdots \mid d_i \geq 0\}$ is a basis for U(L). Together, these tell us that as graded vector spaces,

$$U(L) \cong \operatorname{Sym}(L) := \bigoplus_{n \ge 0} L^{\otimes n} / I_n$$

where

$$I_n = \left\langle (x_1 \otimes x_2 \otimes \cdots \otimes x_n - x_{\tau(1)} \otimes x_{\tau(2)} \otimes \cdots \otimes x_{\tau_n} \mid \tau \in \mathfrak{S}_n \right\rangle.$$

Summary and towards the key calculation

What have we done so far?

- ▶ Defined the Lie algebra L = Lie(V) contained in $H^6(\mathcal{M}_3; \mathbf{Q}) \oplus H^{14}(\mathcal{M}_5; \mathbf{Q}) \oplus \bigoplus_{g>7} H^{4g-6}(\mathcal{M}_g; \mathbf{Q}).$
- Constructed an associative algebra U(L) that contains L as a Lie subalgebra (with respect to the commutator [,] on U(L)).
- Used the Poincaré–Birkhoff–Witt theorem to show that

$$U(\text{Lie}(V)) \cong \text{Sym}(\text{Lie}(V)) \tag{(*)}$$

as graded vector spaces.

Next: Use the identification (*) to calculate the dimension of the degree *d*-part dim_{Q Lie(V)_d} of Lie(V) and determine the growth rate as $d \to \infty$.